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Spatially periodic modulated Rayleigh-Banard convection

R. Schmitz and W. Zimmermann
Institut fir Festkaperforschung, Forschungszentrumlidh, D-52425 Jlich, Federal Republic of Germany
(Received 30 November 1995

Two-dimensional thermal convection in a fluid layer between two rigid walls at different mean temperatures
is investigated. The top container boundary is undulated and the temperatures at the top and bottom boundaries
are spatially periodic modulated, with modulation wavelengths large compared to the thickness of the fluid
layer. The continuous translational invariance in the fluid layer is broken by these spatial modulations. Con-
sequently phase differences between two periodic modulations give rise to an interesting drifting pattern, with
the drift direction depending on the sign of the relative phase between the modulations. At distinguished ratios
between the modulation wave numbers and relative phases the onset of convection changes as function of the
modulation amplitudes from a stationary into an oscillatory one: We call this phenorkpdrbifurcation by
frustrated drifts Possible experiments are described in detail where this phenomenon can be expao@8-
651X(96)05805-5

PACS numbd(s): 47.20—k, 03.40.Gc, 47.54:r

[. INTRODUCTION recent experimenit30]. The drift direction in this example

Fluid systems, especially Rayleigh4®®&d convection depends on the relative phase between both periodic modu-
[1-4] served during the recent era of enormous progress itations.
nonlinear science as variable and quantitative model systems Statistically distributed imperfections at container bound-
for pattern formation, chaos, and turbulenge-10. Spa- aries may lead to localized cellular structures at the threshold
tially extended experimental setups of high symmetry areof thermal convection, similar to those already observed for
often appropriate to address questions from those fields. gravity waveg31, 32. Such localizations modify the bifur-
system of high symmetry is, for example, thermal convectiorcation behavior of cellular structures in a characteristic man-
in a two-dimensional extended fluid layer between ideallyner, as shown for a model systdrd3]. Localized cellular
flat bottom and top container boundaries. patterns occur also in convection in porous md@ai4, 35.

In actual fluid experiments effects of side walls and other Like finite size and disorder effects in phase transitions
symmetry breaking deformations or imperfections at conear thermal equilibrium it is also an important issue to un-
tainer boundaries cannot be avoided in general. Related phderstand how they affect pattern formation far from equilib-
nomena may be kept small under certain experimental corrium. Natural phenomena occur in imperfect environments,
ditions. However, during recent years the resolution inthus the understanding of finite size and disorder effects on
experiments has been enhanced dramatically and even tpattern formation may also help in interpreting correctly
detection of thermal fluctuations became feasible in macromany phenomena such as geology or meteorology in terms
scopic pattern forming systenjd1-14. Therefore, it be- of well defined laboratory systems.
comes increasingly likely that even small imperfections To gain some theoretical insight about the effects of
modify detected signals in an unexpected and puzzling wayoughness in pattern formation it is often helpful to replace
with such high experimental resolutions. One may be inthe roughness by periodic modulations. One may replace, for
clined to call such deviations from perfect geometries dirtyinstance, imperfections at container boundaries in convection
effects. On the other hand, as discussed in this work, thelpy temperature variations at the boundaries and undulations
also give rise to interesting new phenomena, which are naef the boundaries itself and analyze their consequences for
present in systems of high symmetry. the onset and nonlinear behavior of convection. There are a

Side walls, for instance, lead to restrictions of the band ofiumber of investigations about the effects of periodic tem-
stable wave numbers for cellular pattefi§] or may select perature modulation30, 36—38 and boundary undulations
the orientation of convection rol[46—19. In traveling wave  in Rayleigh-B@ard convectior{30, 38—41. An interesting
systems, such as thermal convection in fluid mixtures, thegase occurs when the wave number for the external modula-
can trigger reflection effects and other dynamic phenomention, qy,, is nearly commensurate to the critical wave num-
[20—-22 or they induce dynamic structures in rotating ber of the cellular pattern.: qu~1,2,3,4).. For this case
Rayleigh-B@ard convectior{23—25. Interesting nonlinear commensurable-incommensurable transitions in nonequilib-
wave number selection proces$26—28 or even phase dif- rium systems occur as a function of the deviation from the
fusion[28, 29 are triggered by reduced symmetries, namelycommensurate ratio§42—-47. In quasi-two-dimensional
by a slow and/or a smoottnonperiodi¢ variation of the convective systems a single periodic modulation of external
thickness of the fluid layer and a smooth variation of theparameters can lead to undulated or two-dimensional quasi-
temperature difference across the fluid layer. A periodicallyperiodic patternd48-5@, which have some similarity to
varying thickness of the fluid layer, achieved by undulatedspontaneously occurring wave number competition in con-
top and bottom container boundaries and a phase shift berection above secondary bifurcatiofl].
tween both, leads to a drifting cellular pattern as shown in a These examples show that a number of interesting effects
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b) phase shift (p=g FIG. 2. A design of a convection cell is proposed that combines
— the geometry of Fig. (b) (right pary and of Fig. 1c) (left par). The
@ @ @ @ @ @ @ @ sign of the relative phase shift between the modulations of the top
- T T and bottom plates is reversed by a phase jump of the modulation on
c) phase shift ¢ = -g the bottom plate. The opposite sign in the left and right parts of the
- cell leads to virtually drifting convection rolls, which are frustrated.
@ @ @ @ @ @ @ @ We will show that such frustrated drifts induced by periodically
- T changing phase shifts lead to a new phenomehtapf bifurcation

by frustrated drifts
FIG. 1. A sketch of a Rayleigh-Bard convection cell with

wavy top anq bottom boundaries. If the periodic undlulations of the\/ection roll9 drifts [30]. The drift direction depends on the
two boundaries are in phase, as showrdh then stationary con- o of the relative phase between the undulation of the top

vection rolls occur above threshold. A phase shift between the tw%nd bottom boundar hereas the velocity depends on the
boundary undulations, as indicated (i) and (c), leads to drifting u y w v ity aep

convection rolls above threshold and the drift direction depends oﬁnOdUIusf of the phase shift and on the amplitude of the
the sign of the relative phase. modulations.

For a finite phase shift between the boundary modula-
in pattern formation are related to finite size or inhomogene!ions, the thickness of the fluid layer is spatially varying and,
ity effects. In this work we focus on a different type of pe- 8 & consequence, the envelope of the secondary flow fields
riodic boundary modulatiorfas indicated belowbeing in ~ are spatially modulated, whereby the modulation wavelength
some aspects closer to statistically distributed irregularities'S identical with the externally imposed wavelength.

We consider periodic temperature modulations at the top or Boundary modulations and their consequences are inter-
bottom (or both boundary of a cell for thermal convection esting by themselves, but they are also appropriate to model
combined with an undulation of one boundary. some aspects of heterogeneities occurring at the boundaries

For such a geometry we find a dynamic phenomenon, thef the fluid container. Spatially homogeneous phase shifts
so-call Hopf bifurcation by frustrated drifts. This effect is between two periodic boundary modulations, such as in Fig.
qualitatively described in Sec. | A and in more detail during1, are rather unlikely in real systems. A geometry as sketched
the rest of the papdisee Secs. -1V in Fig. 2, where the relative phase changes periodically in
space, seems more appropriate to mimic some aspects of
statistically distributed imperfections at boundaries. Then the
virtual drift directions alter periodically between neighboring

It is well known that convection rolls occur in a horizontal phase jumps. Hence, the spatially averaged local drift direc-
layer heated from below. The differenc®T=T,—T,, be-  tion would vanish, similar to that expected for randomly de-
tween the temperature at the bottom pldig, and at the top  formed top and bottom plates.
plate, T, , must increase beyond some threshdlt>AT, to How might periodically reversed drift directions, corre-
induce convectiofl-3]. sponding to periodically repeated phase jumps such as in

When the top and the bottom boundaries in a RayleighFig. 2, affect the onset of the secondary flow? According to
Benard convection cell are plane and parallel, then belowFigs. 4b) and ic) one expects drifting secondary flow in
convection onsetAT<AT,, heat is transported diffusively every interval of homogeneous phase shift. However, since
through the fluid layer and convectively beyoAd .. In the  the virtual drifts have opposite drift direction in neighboring
presence of an undulated boundary there is already conveiitervals, they may compensate each other and the secondary
tive flow with a periodicity of the external spatial modulation convection could be stationary and nondrifting. A further
for arbitrary values of temperature differenc€$. This flow  possibility seems imaginable. The secondary flow drifts in
may be weak for small temperature differendeE<AT,, every interval of homogeneous phase shift and, in regions
however, it can be already considerable oF~AT., de- where the phase shift changes its sign, there might be a
pending on the modulation amplitude of the boundary. Thesource or a sink for the drifting waves, depending on whether
presence of thigprimary flow has various consequences for the drifts point to each other or from each other. We found a
the onset of the “usual” convection rolls, which we call third possibility: these spatially varying virtual drift direc-
secondary flowTheir wavelength is mainly determined by tions change the eigenvalue spectrum in such a way that
the mean distance between the top and bottom pthtesd  above critical amplitudes of the boundary modulations the
less by the external modulation. When the top and the botenset of convection is changed from a stationary into a os-
tom plates are undulated by the same wave number and botlillatory bifurcation. We call this phenomendatopf bifurca-
modulations are in phase, as indicated in Fi@),1then the tion by frustrated driftslt has been recently predicted within
fluid layer thickness is everywhere the same and the onset @f generalized Swift-Hohenberg equati&?®] and the major
the secondary convection is still stationary. However, if therdask of this work is to discuss this phenomenon in terms of
is a relative phase shift between both modulations, as indian experimentally accessible system, such as Rayleigh-
cated in Figs. (b) and 1c), then the secondary floécon-  Benard convection.

A. Qualitative description of the main result
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gations are restricted to a two-dimensional situation, with the
vertical z coordinate and the horizontal coordinate. The
assumed incompressibility,

Ayt dv,=0, (2.7

allows one to define the two velocity components in terms of
the scalar function?’:

FIG. 3. An experimental design for a combination of an upper vy=09,¥, (2.29
plate of corrugated form and a temperature modulation at the lower
plate. The ratio of the wave numbers of the periodic undulation of v,=—KV. (2.2b

the top plate ko) and the temperature modulation at the bottomm the Boussinesq approximation, which is considered here,

plate k,) is kg:k,=2:3. Thegray scale in the fluid layer indicates . : .
the temperature field of the primary flow and along the solid Iinesthe equations of motion for the velocity potenti(r,t) and

velocity potential of primary flow is constant. The curve below the the temperatur&(r,t) of the fluid are[7, 55
cell indicates the temperature variation at the bottom plate. AW = VAZ\I’—gaaXT— (0,0 0, — W 3,) AW,

(2.33
To show by explicit calculations that this Hopf bifurcation _

by frustrated drifts occurs also for Rayleigh+ed convec- NT=1AT= (0¥ 0=V )T, (2.3
tion, we actually replace in this work the “didactic” geom- We scale all lengths in units of the thicknessthe velocities
etry with phase jumps in one boundary undulation, as showin units of /d, the temperature in units afv/ agd® and the
in Fig. 2, by a smoother and essentially equivalent geometrime in units ofd?/ x. Furthermore, we consider the limit of
of the convection cell. We choose a geometry as displayed itarge Prandtl number®=w»/x>1. The scaled versions of
Fig. 3. For this convection cell the top boundary is undulatedhe equations of motions to be considered during this work
and the temperature at the bottom boundary is modulatedre
whereby the chosen wave numbers of both modulations have

— A2
the ratio 2/3. Analytically, such a smooth geometry is much 0=ATF =0T, (243
simpler to deal with and this choice of a cell design might HT=AT+(0,¥3,— 9,V 3,)T. (2.4b
have experimental advantages. It seems easier to change the
amplitude of the temperature modulation by varying the lo- B. Boundary conditions

cal heating in an experiment. Changing the amplitude of

b(_)und_ary undulations WOU|d require s_everal e.Xpe”ment%elocity are considered, however, with periodic modulations
with different cells of different modulation amplitudes for ¢ o temperature at the top and bottom plates as well as a

the boundary deformation. Nevertheless, we do need at leaghjqgic undulated top plate. The bottom plate is located at
one boundary undulation to break the up-down symmetry,_ g 5nd the top plate at

which is essential for the occurrence of the phenomenon

Rigid as well as stress free boundary conditions for the

Hopf bifurcation by frustrated drifts. With two temperature z=1+Hy(x)
modulations only, this effect will be absent for Boussinesqw_
; ith
fluids.
Ho(X)=Fgcogkgx) and ky=ngk. (2.5

B. Description of the content o ) ) )
Ideal conductivity of the bounding plates is assumed, which

In Sec. Il the basic equations for thermal convection ar§ea¢s to the following boundary conditions for the tempera-
summarized and the boundary conditions as well as thg,.e field:

boundary modulations are specified. In Sec. Il we give ana-

lytical expressions for the basic flow under modulated con- T(X,2)=T,+H.(x) at z=1+Hy(x), (2.63
ditions and we describe the linear stability analysis of the
periodic basic flow in the limit of long wavelength modula- T(x,2)=T+Hy(x) at z=0, (2.6b

tions. In Sec. IV the numerical analysis of the equations a%ith modulations
presented in Sec. lll is given. The primary flow as well as the

properties of the secondary flow at threshold are presented. H,(x)=F.cogk;x+ ¢q) (ky=nk), (2.79
With Sec. V we finish with a few concluding remark#
few selected aspects have been already described in two Ho(X) = FacogkoX+ ¢@3) (Ka=ngk). (2.7

short communicationgb2, 53 and a more extended descrip-

tion of a part has been given in R¢64]. Only integer values fon; are considered and therefore only

commensurate ratios between the modulation wave numbers

are allowed. For both the stress-free as well as the rigid-

Il. BASIC EQUATIONS AND GEOMETRY boundary conditions, the boundaries are impenetrable and
A. Basic equations therefore the vertical component of the veloaity= — 9, ¥

. - I ) . has to vanish at the boundaries:
A simple fluid in a gravitational field under the action of

an external temperature gradient is considered. Our investi- ¥(x,z)=0 at z=0,1+H(x). (2.8
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For rlgld (realistid bOUndary conditions also the horizontal 7 and % are linear operators arfa(,) describes the non-
velocity parallel to the surface;=(n- V)W must vanish: linear parts of Eqs(2.4).

With rather different length scales of the primary and sec-
ondary convective states, the equations of motiorﬁfpand

n is the vector normal to the boundary. For stress-freal, can be separated and formulated in the following form:
boundary conditions the first derivative of the velocity par-

(n-V)W¥(x,z)=0 at z=0,1+Hy(x). (2.9

allel to the boundary has to vanish: U= Zuy+N(Ug,Uy), (3.9
2 - - - - e e o
(n-V)W¥(x,2)=0 at z=0,1+Hy(x). (2.10 M lip= Fplig+ N(Uy,Uy). (3.5

With the above definitions of the boundary conditions andThe linear operator in the latter equatioff,, depends on

the introduced temperature scaling the well-known Ray[eigqhe primary state. As indicated above, the linear part of Eq.
number is now proportional to the mean temperature differ(3 5 provides in this limit a well-defined threshold for the

ence between the top and bottom plates: onset of the secondary floﬁ/z. [Without that separation of
agdBPAT the length scales the bifurcation into the secondary state
= (2.1)  would be imperfect and the separation into the two equations
of motion (3.4), (3.5 is not reasonablg.
The long wavelength modulatiokk@<1) has in addition
to the “sharp” threshold the conceptual advantage that
kd<1 can be taken as a small “expansion” parameter. Es-
The modulation wavelengtky, is taken much bigger than pecially fpr undulated .boundaries., this small parameter al-
the thickness of the fluid layeh,>d, for advantages ex- lows wlth|n a perturba'tlon expanS|on.the transformation mto
plained in the following. coordlnate systems with flat boundaries, where the equations
Without modulations at the boundaries, the primary stat®f motion are still of reasonable exte(gee Sec. Il B 1
has a linear temperature profile interpolating between the tof!SC the primary state can be calculated analytically for the
and bottom temperature, and there is no convective fluid mo€ading order ofk. Both aspects reduce considerably the
tion. The undulations of the bounding plates or the moduIaIEChn'C?‘l effor_t for_ calculathns with m(_)dulated geometrles.
tions of the temperature at the boundaries induce a primary !N this section first the primary flow is determined essen-
convective flow for arbitrary values of the mean temperaturgi@lly analytically from Eq.(3.4): In Sec. Ill A 1 for a single
difference, T,—T,. This primary flow and the temperature temperature.mod'ulanon and in Sec. llIB 2 for a wavy top
field have the periodicity of the external modulations. boundary with simultaneous temperature modulations on
In the absence of modulations and Rabove the critical POth boundaries. At the second step in Secs. IllA2 and
value R. the linear temperature profilgrimary statg be- Il B 3 the equations for the_ stab|llty properties of the pri-
comes unstable against convection roecondary state mary statg, namgly, the explicit form of the Imear_ part of Eq_.
with a wavelength of the order of the layer thickness,(3'5) and |.ts solut|ons.are formulate_d. The numerical analysis
\.~d [3, 56]. For modulation wavelengths much larger than©f these linear equations is given in Sec. V.
the thickness of the fluid layer one has a clear separation of
the length scales of the primary and secondary fields of the A. Temperature modulation at the bottom plate
temperature and flow. Hence, a sharp threshold for the onset First we describe the effects for the onset of convection as
of the secondary flow can be expected as in the unmodulatefley are induced by only one spatially periodic temperature
case. Therefore, it is reasonable to divide the whole solutiofodulation, for example, at the bottom platéy=H,=0).
into the long wavelength or homogeneous primary fields;That is a simple enough configuration to demonstrate explic-
W¥(x,z), T(x,z), and into the short wavelength secondaryitly the calculational scheme for stress-free boundary condi-

R:T|_Tu VK

[ll. METHODS OF SOLUTION: BASIC STATE, LINEAR
STABILITY, AMPLITUDE EQUATIONS

fields, ®(x,z,t), O(X,z,t): tions (2.8 and (2.10. In the next subsectiofill B), where
we consider the temperature modulation at the top or at the
W(x,z,0)=P(x,2) +P(x,2,1), (3.1  bottom plate simultaneously with the undulation of the top

plate, we can no longer show all the steps of the analysis
explicitly in the available, limited space.

T(x,ZJ)=T(va)+®(X,Z,t) . (Slb)
primary secondary 1. The primary flow

) ] ) ] ) Since we are restricting ourselves to long wavelength
Symbolically, the equations of motion given in Hg.4) can  mogylationskd<1, we can employ a perturbational ansatz

be written as for the primary state:
o= 2u+N(u,0), (3.2 T(x,2)=T0(x,2) +kTX(x,2) +O(k?),  (3.68
with V(x,2)=V0(x,2) +k¥i(x,2)+ O(K?).  (3.6b
l]:(qf), J_Jlﬂjz_ v + ® _ (3.3 Th_ese fields must fit the periodicity of the temperature mody—
T T 0] lation at the boundary and can be expanded into Fourier
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emperature T

potential ¥
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0 5 10 15 20 25 30 35 40

FIG. 4. The primary flow for the spatially modulated temperature at the bottom plate is $hewiven analytically in E¢(3.15]. The
temperature fieldl is shown in the top part and the potentililin the middle. The Rayleigh number was taken at the threshold of the
secondary flow, with the modulation amplituG@=0.1Rf: and wave numbek,=0.3. The lower part shows the dependence of the
potential V" at z=1/2. (The dark areas correspond to larger values for the fi#ldsnd T and the bright areas to smaller values for both
fields)

series. Setting the Fourier ansatz into E@s4) and using the 3;1\?1:(2_ 1)a,H(X)/K, (3.12
fact that the derivatives; are of the orde©(k"), we end up

with the following hierarchy of equations. At the order which is solved by

0(k% we have

_ Wh(x,2)= P(2) dyH(X)/K, (313
day=0, 3.7
a4 (378 wherein the polynomiaP(z) is defined as
92T°=0, (3.7 1
P(z)= 5=(—8z+20z3— 152*+32%). 3.1
and at ordeiO(k?), (2)= 360 ) (3.14
_ XF In leading order of th& expansion the primary flow is
Iavi(x,z)= v (3.89 _
W(x,2)=—P(2)d,H,(x)+ O(k3), (3.153
_ 1 = =  — - .
2TH(x,2)= E(aZ\P(’aXTO— 8,T%,w%.  (3.8b T(X,2)=T;+Hz(X) —2(R+Hz(x))+O(k?). 3155

Equation(3.7b can be solved by a polynomial ansatz: In the next paragraph we will show that this primary state
_ leads to a modified onset of the Rayleighraed convection
T%z)=c,+cCyz. (3.9  rolls. (The form of the primary flow is depicted in Fig.)4.

From the boundary conditionsﬁ(x,z= 0)=T,+Hx(x) 2. Linear stability of the primary flow
andT°(x,z=1)=T,, we can determine the coefficierts Equations3.5), linear in® and®, take with the primary
and c, and obtain the final expression for the temperaturg,,,,, given in Egs.(3.15 the form

field, o

= 0=0,0—A%d, (3.163
T°(2) =T+ Hy(x) —z(R+Hy(x)), (3.10

with R=T,—T,. According to homogeneous boundary con- WO =40 =07¥0x0 +(9;Tdy— 0xTI)P. (3.161
ditions for the velocity potential?® is independent ok. A parameter set can be calculated at which the primary flow
Hence, also Eq(3.7a can be solved with the polynomial pecomes unstable against the small inhomogeneous perturba-
ansatz tions® and®. By eliminating the temperature field, the
analysis of the above equations can be simplified further. For
that we differentiate Eq.3.16b with respect tax and elimi-

For the assumed stress-free boundary conditions all the ¢ ate © from Eq. (3'.166)' The resuiltmg linear equation in
may be solved with the separation ansatz

efficientsc;=0 vanish and therefore the velocity potential

does as well¥°(x,2)=0. D(x,2,t) = D1 (X)D,(2)e". (3.17)
Using again a polynomial ansatz with respectziait is

easy to show that the temperature field vanishes at first ordéfor the homogeneous stress-free boundary conditions

in k: TY(x,z)=0. With its explicit form of T%(z) as givenin  ®,(z) =sin(72) is an exact solution. To approximate the ex-

Eq. (3.10, Eq. (3.83 takes the form actz dependence in the presence of the spatially modulated

WO(X,2) = C1 + Coz+ C5Z2+ C4Z°. (3.11)
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temperature one has to use the serieb,(2) The linear perturbation® and® with respect to the primary
=Eﬂ=1sin(m7rz) up to some appropriate numbbr. Here, flow grow for the chosen parameter combinationsrit0

we keep only the first member of this series, si#)( and they decay ir<0. We are interested in the neutrally
(N=1). This simplifies the analysis in the following consid- stable caser=0, separating the stable from the unstable
erably; however, it keeps the essential effects. To remove theegime. Keeping all parameters besigiéixed, the condition
explicit z dependence in Eq$3.16), we multiply the equa- o=0 gives via Eq.(3.23 an implicit condition for the de-
tions from the left by singz) and integrate with respect to termination of the Rayleigh numbé,(g?, ...) at the in-

z. Then the equation linear i, is obtained up t@(k): stability point.Ry(q) is the so-calledheutral curve For of a
s o 2 s Hopf bifurcationone has a degenerated complex conjugate
o (9= )P = (9, — 7°)° Py pair,
=\tio, 3.2
~ T (72 2o HA D oA (329

with the Hopf frequencyw as the imaginary part. The onset
of convection happens above the minimum of the neutral
curve Ryo(q), R.=minRy(q)]=Ry(g=q,). In case of a Hopf
bifurcation we call the frequency at that point the critical
(3.18 frequency:w.= wo(q=9.). ForH,=0 we recover the well-

This linear ordinary differential equation is solved by a Flo- known threshold for stress-free boundary conditions and un-
quet ansatz modulated temperature,

3
= 5 HA(X0) D1~ [R+ Hp(x) ]850

N 4(772+q2)3
q)l(x):eiqxl 2 gleilkx_ (3.19 Ro(q)=m T, (3.26
=N

with the critical valuesRy(q=q.)=R.=277*/4=657.6,

Without thermal modulationH ,=0) all coefficients besides qc=7-r/\/§=2.221, andw,=0.

go vanish. Sorting all the terms proportional ¢ we end
up with the eigenvalue problem, _
B. Wavy boundary plus temperature modulation
og=.729 [9=(9-n,---.ON)], (3.20 Here we proceed to the more general boundary modula-
o _ . tions. The primary flow as well as its stability properties are
where the matrix# is a band matrix of width (8;+1): calculated in the presence of a wavy top boundary plate and
2 simultaneous modulations of the temperature field at the top
(3.21a and the bottom plates as introduced in Sec. Il B. The scheme
explained in the next subsections is described for rather gen-
1 1 1 3 eral combinations of temperature modulatiddg,H, and
S == Y S S boundary undulatioH,. Nevertheless we will concentrate
Ain= 3 I:Z(Cv2+ 772)2'8('8+k16774(ﬁ T k)' in Sec. IV mainly on t?le following caseé) Geometric un-
(321 dulation of the top boundarpy=1, H;(x)=0, H,(x)=0;
(i) two temperature modulations with wave number ratios
(Y2+ w2)2— Ek) ki:k,=1:1 and 2:3;(a =1, np=1, Ho(x)=0, (b)
2 n,=2, n,=3, Hy(x)=0; (iii) upper wavy boundary and
(3210  temperature modulation at the bottom boundary with wave

F, is the amplitude of the temperature modulation and thei:ur(?(?e_ror?gfakg:EZ:Eé :”(dx)gig; @ ng=1, ny,=1,
1 Y 0~ & 1279, 1 M

constants are defined as follows:

) a
J?y/'|1|:_(a2+772)+Rm,

, 1 1 1
A N0, = EFzmy Y~ ki

a=q+kl, (3.223 1. Transformation into flat boundaries
To calculate the primary flow as well as its stability prop-
B=q+k(I—=ny), (3.22D  erties in the presence of a boundary undulation it is conve-
nient to transform into a coordinate system where the bound-
y=q+k(l+ny). (3.229 aries become flat again. The transformation to the new

From the solvability condition for the homogeneous systemcoordmate‘f and is as follows(see[39)):

of equationg(3.20), 7
E=X, n=——. (3.27
de(oc7—.2)=f(0,9°>,R,F5,K% ...), (3.23 1+Hg(x)

the eigenvaluesr; are determined as a function of the pa- Within this definition the bottom and top boundaries are lo-

rameters {7 is the unity matriy. We sort the spectrur; in ~ catéd aty=0,1. After the transformation of the equations of

ascending order with respect to the real parts and calculat®©tion (2.4 into the new coordinates we keep terms up to
the eigenvalue with the largest real part: the leading order in the modulation wave numkerOther-

wise the differential operators become rather cumbersome.
o=mayRg g;)]. (3.29 The details of the operator transformation are given in the
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Appendix and the equations of motion in the transformedwith
system are, up the leading orderkin
M= 3d:H5(£), (3.39
(9g+nBa,)T=(dg+ A0} +4nBagd, +2A%9%57

(3.39
(3.283 , . . . : :
Using a polynomial ansatz for this ordinary differential equa-
T=—Ad,V(d+7B3,) T+ (d+ 1nBd,)VAI,T tion the primary flow up taO(k) is given by
+(92+ A2 +29Bd,)T, (3.28h _ K
_ W& )= 2z[Pi(mM (&) +Pa(mM(8)], (3.40
with
- 1 T(&,7)=Ti+H(&)+ 7(H1(§) —H(§) —R),
MO TrH@ ~ TrFgcosks)’ &2 (3.4
— i with
B(£)= dgHo(§)  KoFosin(koé) (3.208

~ 1+Ho(é)  1+Fgcogkgé)” 1
P.(7)= ==—(159—307°+ 157%), (3.423

The conditions for stress-free boundaries described in Sec. 360

I B are in the transformed coordinate system:

1
T(£,7=0)=T,+Hy(&), (3.303 Pa(1) = 355(7T7—107°+37°) (3.42h
T(&n=1)=T,+H($), (3.300  for stress-free boundaries and
V(¢£7=0,1)=0, (3.300 1
Pi(n)= 15(57°~107°+57%),  (3.433
FW(£1=0,1)=0. (3.300
For rigid boundary conditions the latter conditiG® 309 is _ i 2_3.3, .5
changed into Pa(n)= 15027 =37+ 7") (3.439
d,¥(§,7=0,1)=0. (3.3)  for rigid boundary conditions.
2. The primary flow 3. Linear stability of the primary flow
We use again the expansion given in E¢s6) for the The separation ansatz given in E¢&1) together with the
calculation of the primary flow from Eg$3.28. The equa- transformed equations of motid.28 lead to two coupled
tions for the fields in leading ordew?®, T%=0O(k?), are linear equations for the fieldd and® with periodic coeffi-
_ cients:
A9 WO(&,7)=0, (3.32
— 1 B 1 4.4 B 3 15,
AZ&%TO(S,n)ZO. (333) Fﬂg'i‘ 7]?(9.,7 0= EF7§+(9”+477F(9§(9”+2K2(7§37]
‘17’(5, 7)=0 vanishes again and with the polynomial B B 3
ansatz T°(¢, ) =c,+c,5 we find from Eq.(3.33, +8ﬁ¢9§¢9”+4ﬁ 10¢9y| P, (3.44
TOE, ) =T+ Ha(&)+ 7(H1(6) —Hy(6)—R). 1 1 1 1
(3.39 22h0=—29,¥30— 19,09 T+19,ToP
The equations for the fields in next higher ordk®) read 1 B
2 2
+ ﬁ(?g"‘ 07774‘ 2? 7](3’50",7 0. (3.4H

PO PN =
A% (&,7m) k(a§+ 7nBd,)T, (3.35
The periodic coefficients have the periodicity of the bound-

A232TL(£ 7)=0. (3.39  ary modulations and thé and » dependence can be sepa-
K rated with the following Floquet-type ansatz:

From Eg.(3.36) one finds agaiﬁTl=O and with the explicit

N,M
form of T° Eq. (3.35 takes the form ?

D& pt)=eottiaé > dlkéE () tec.,

I==N,m=1

KA*AWL=M (&) + pM (&), (3.3 (3.46
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N,Mp

O(&py=emrat >

T, me"*ésin(mar ) +c.c.,
m=1

(3.47

(c.c. denotes the complex conjugateor free boundary con-
ditions f,,( %) is of the form

fm(7)=sin(mm7), (3.48

and for rigid oned (%) can be expressed for even and odd
values ofm in terms of Chandrasekhar functio, and

Sw [3]

fn(7)=C(7m) (for meven), (3.493
fm(7)=Sn(7n) (for modd), (3.49n
which are defined by the following expressions:
1 1
costhl 1-3|_cothel 3]
Cm( 77): 1 - 1 )
COS”(E)\m) CO{E)\m>
(3.50
. 1 , 1
sin ,LLm( _E) Sl ,LLm( _E)
Sl )= 1 - 1 :
sinr{z,um} sin(z,um)
(3.51

Herein\,, and u, are solutions of the following two equa-
tions:

tanh(\ ) +tan 3\ )

0, (3.52

Coth(3 wm) + €Ol 5 ) =0.. (353

To transfer the linear equations into an eigenvalue problem

for the constant coefficients, ,, and P, ., one has to elimi-
nate the remaining dependence&and » by projecting Eq.
(3.45 onto

o 1 .
| de ane et o (354
— 0
and Eq.(3.44 onto
o0 1 .
j dff dye Xsinnm7n) 0. (3.55
— 0
This leads to two coupled linear equations:
i 7,0 =_7,®, (3.56
0510 =_5,0+i5;D, (3.57)

where the vector® and® are defined by
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(I;l o1
b= and O= (3.59
M GMr
and the subvectors by
Pm,N Tm,N
M= and OM= : (3.59
Pm,—N Tm,—N
The matrices#; and. 7, are of a block structure:
y Mpl
A 2P
= (3.60
AN MM

SO
I |

The matrices?,, .%,, and.Z5 are of a similar form; how-
ever, the dimensionsl andMp are exchanged.

The submatrices are of the dimension N21)
X (2N+1), with a bandwidth up tcgmax(n,,n,). They
can be written in terms of the vector
eNke),

(3.61

with the help of the dyadic produ¢d and the abbreviation

E(&)=(e INKE

g 1
(U>=f_md§J0dnU(§,n) (3.62

in the following form:
A= (E* (§)Of m(m)aysininmn)E(£)), (3.633
AFN=(E* (£)Ofm(n)arfa(n)E(£)),  (3.630

%xlnn:<|§* (g)@sin(mq-rn)blsin(nwn)é(f))-
(3.630

A= (E* (§)Osin(mm )b sin(nmy)E(£)),
(3.630

A= (E* (§)Osin(mmy)bsfa(n)E(£)). (3.639
Herein the operatorg; andb; are defined by

1 B

1 B 1 B
_t 4, .4 3 2.2 2
az—ﬁag'f‘577]4‘47]?(95(9,74'2?(95(97]4‘8?&56’7]
B 3
+4F7]0"§o77], (3.64b
b,= ! 3.64
1_K21 ( . O
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1 1 D(&,7,t)=Age! 9T F T (£, )+ Boe! Tt T UVF (£, 7)
b2: - E(anle l+ (97]P2M 2)07§+ F&é"’ 53]

+c.c. (3.69
+2£2 79¢d,, (3.640 F*/~ correspond to the respective Hopf frequency, and
A is defined by the serigsee also Eq93.46 and 3.47]:
N M
1 1 +/- v - ilk¢
by=— £ [79d(H1=H2)+9¢H210,+ £ (—~R+Hi—Hz)d,. Fr(gm= 2 2 Pl € fn(n). (370

(3.649
Both functions have the periodicity72k and describe in
The calculation of the submatrice/"" is rather complex. Eq. (3.69 a slow modulation of the fast varying traveling
Therefore we developed for the derivation of those an algoand standing wave pare'(*9=%)  For the temperature
rithm with the algebraic manipulation packageprLE pro- field ® (&, »,t) a similar expression can be obtained; how-
viding the Fortran source codes. This is especially helpfukver, the amplitude®, ,, must be replaced by, ,.
when we use different combinations of the external modula- For B,=0 the expression in Eq3.69 describes a left

tions. traveling wave and foA,=0 a right traveling wave[For
® can be eliminated from Ed3.57) via 0.=0 andA,=0 or B,=0 formula(3.69 describes a sta-
tionary quasiperiodic cellular structutéAssuming noncon-
D=i. 7, 7,0 (3.65  stant amplituded, andB,, which are slowly varying on the
spatial scales 2/q. and 27/k as well as on the temporal
and one obtains the following eigenvalue equation: scale 2r/w., then one can derive for them envelope equa-
tions[57, 58 in a smalle neighborhood of the critical Ray-
0510 =2,0— B3 271 1,10, (3.66  leigh numberR;, with

This can be formally simplified into #=(R=R/R;. 3.7

The linear parts of such equations are well known and have

c®=720, (3.67  the following form[59—61:
with To(d—vgdx)Ag= (e + 8e) (L+iCo)Ag+ E5(1+icy) d7A,
) + i .
Fm BN Ty B Ay ), (3.68 (nonlinear termyg (3.72a9

To( 4+ v4dy)Bo=e(1+ice)Bo+ £3(1+ic,) 2B
From the eigenvalue with the largest real pait, o+ vgd)Bo=el 0)Bo+ &l 1)%Bo

=maxRe(o;)], the neutral curveRy(q) and the Hopf fre- +(nonlinear terms (3.72bh

guency wg(q) can be determined via the condition=0. ) ]
Minimizing Ro(q) then gives again the critical Rayleigh 6¢ describes the case when the thresholds for the right and

numberR,, the critical wave numbeq., and in case of a Igf.t traveling waves do not.agree. AII.the othgr linear C(_)t_af—
Hopf bifurcation also the critical Hopf frequenay, . ficients of these two equations describe phyS|_caI quantities,
The dependence of these critical quantities on the paranfUch as the relaxation time,, the group velocityvq, the
eters is described in Sec. IV, whereby for all calculations thdin€ar frequency shifec,, the coherence lengté, and the
first three Chandrasekhar functions have been used. Using lifear frequency dispersioggc; . All of them can be calcu-
the expansion€3.46 and (3.47 a larger number of these lated from the dispersion relatiom(R,g°k, ...)=\*iw
functions changes the results only slighfiyuantitatively, ~for the critical eigenvalues by the following expressions:
not qualitatively. The convergence of the expansion has al-
ways been tested numerically. In addition the first six modes v :‘9_“’ o= 1 cn=R.T ‘9_“’
. . . g ' 0 ' 0 c’0 '
in the Floquet expansio(B.46) have been used, which are aq Rc.IRe(0)/dR IR
also a reasonable approximation.
2= 1 R - 70
C. Amplitude equations: Linear parts 0 2R, (9q2’ ! 253 aqz .

In contrast to unmodulated Rayleigh+##d convection Those derivatives are evaluated at the critical values
the eigenvalue spectrum of E@®.67) contains under certain R..dc,wc. Typical numerical results for these physical

conditions also conjugate complex pairs with imaginary partgyyantities are given in Sec. IV D for representative parameter
*w (see Sec. IV C beloy Those pairs become critical gets.

[Re(c)=0, Im(c)=*w] at certain values for the ampli-

tudes of the boundary undulation and the simultaneous tem-
perature modulation and all other eigenvalues are still
damped Ref)<0. In such a case immediately above The numerical analysis of equations formulated in Secs. Il
threshold the secondary flow is expected to be a traveling cand 1ll, namely, the determination of the basic state and its
a standing wave of the following form: instability with respect to a short wavelength secondary state,

(3.73

IV. NUMERICAL RESULTS
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' ' T bottom boundaryH,(x), is given in Eq.(3.15 and its spa-
tial structure in thex-z plane is plotted in Fig. 4.

Having in mind the relation§2.2) between the velocities
v; and the Potentia¥ it is easy to see from the lower part of
Fig. 4 that the flow is upwards in the range with larger tem-
perature differences. The amplitudes of the velocity field of
the basic flow increases linearly with the amplitude of the
a0k 3 temperature modulation and the wave number of the modu-
E lation.
610k 3 The presence of the temperature modulation induces some
3.5 FHHHHHHRH o = : degeneracy in the neutral curi®y(q). Instead of a single
_____ - ] minimum in the neutral curve &, for the unmodulated
30F "~ ——---- case, one has to deal for the modulated case with several
local minima that are separated ky The location of those
local minima on the neutral curvy(q) are plotted in Fig.
5(b) for increasing values of the temperature modulation.
20 TTT T ] The solid line in Fig. ) indicates the absolute minimum of
L TTTTTTTTemmmmTT the neutral curve. It ends for decreasing modulation ampli-
5L ] tudes at the local minimumg, of the unmodulated case. The
F-=- other local minima vanish for increasing valuesrof. The
(R A P : . 1 absolute threshol@R.(F,) decreases with increasing modu-
0 0.2 0.04 008 0.08 019 Jation strength as shown in Fig(&. Also the critical wave
temp. modulation strength F, /R, numberq, decreases slightljsolid line in Fig. §b)]. This

tendency has been also reported in the literature on similar

FIG. 5. The threshold for the onset of secondary flow and itsprozlems[?’?' 39. fth ial dulati fth .
critical wave number are given as a function of the normalized s a consequence of the spatial modulation of the primary

modulation amplitudeF,/R’. The modulation wave number is flow, the envelope o_f the linear secondary flow at threshold
k=02 is also modulated with the wave number of the temperature
variation at the boundary. The modulated secondary flow is

are described in the present section for a representative nuf?oWn in Fig. 6 for two different values of the amplitude of
ber of geometries and parameter combinations. Since thefB® témperature modulatidf,. The eigenfunctions of Eqg.
are no qualitative differences between the resuilts for free antB-20 corresponding to the eigenvalue[leg=0 are shown,
realistic rigid boundary conditiongsee Sec. Il Bwe use Which are transformed via E¢3.19 into real space. In Fig.
stress-free boundary conditions for thermal convection irf(@ t?e eigenfunction is given for the modulation amplitude
Sec. IV A for reasons of simplicity and for the rest of this F2/Rc=0.01, at the critical Rayleigh numbé®.=656.25
section we use rigid ones. The amplitudes of the temperatur@nd the critical wave numbey.=2.22, and in(b) the eigen-
modulationsF, andF,, are always measured in units of the function is p]!otted for a considerably larger modulation am-
critical Rayleigh numbeR? for stress-free boundary condi- Pplitude F;/R;=0.1. The critical values in the latter case are

tions orR?, for realistic boundary conditions, respectively: ~already strongly reduced ®;=613.65 andy.=2.1757, and
the eigenfunction is more localized. This strong localization

R£:657.511, R.=1707.762. (4.1  of the secondary state may be sensitive to thermal fluctua-
tions near onset.
Keeping the modulation amplitude, fixed and increas-
ing the modulation wave numbkrleads to increasing values
The analytical expression for the basic flow in the presfor both the critical Rayleigh numbeR. and the critical
ence of the long wavelength temperature modulation at thevave numbei,., as well as to a weaker localization of the

Q0
~—

650F E

c

640F E

630F E

crit. Rayleighnumberq

A2
T
|

[

2.5

crit. wave numberR

A. Thermal modulation of the bottom plate

potential ®

a)F.=001R

FIG. 6. The linear eigenmodes of the second-
ary flow are shown for the same parameters as in
- - ' , . Fig. 4. In (@ for F,=0.01R! and in (b) for
0 5 10 15 20 2 % % 40 " F,=0.1R.. At the bottom of(a) and(b) now the
potertd] profile for the potential of the secondary flow
along z=% is given (stress-free boundary condi-
tions).
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linear secondary flow. This tendency persists up to commen- a)
surate ratios foqg./k.

_5V
D
o
[¢)]

B. Wavy top boundary

Replacing the temperature modulation by periodic undu-
lation of one of the boundaries, the primary flow, the spatial
structure of the secondary flow as well as its critical value
R. are changed in a similar manner, as described in the pre-
vious section. The velocity field of the primary state has also . L . . .
a finite amplitude and it agrees with that of the boundary 0 30 60 80 120 150 180
modulation. The critical Rayleigh numbg, at the onset of phase shift ¢
the secondary flow and the critical wave humbgidecrease b
again with increasing values for the undulation amplitude
Fo, however, much more strongly. Increasing values for the
undulation wave numbés, lead also to increasing values for
R. and g.. Even the localization behavior is qualitatively
similar, but it is more strongly pronounced for a geometric
modulation.

drift velocity 10

0 T T T T

_5V
D

1

T

1

drift velocity 10

C. Two wavelength modulation -3f 3

From the whole variety of imaginable combinations of 0 001 002 003 = 004 005
temperature modulations at the top and bottom plates and a modulation strength F /R _=F,/R_
simultaneous periodic undulation of the top plate, we con-
sider only a few representative configurations as described FIG. 7. The drift velocityv = w. /. of the secondary flow at
already in Sec. lll B. We analyze in this section especiallythreshold is shown ifg) as a function of the relative phagg (deg
those modulations in more detail that show a transition intqand ¢,=0) between the temperature modulation at the top and
secondary drifting patternéSec. IV C 1 as well as a Hopf bottom plates. Modulation amplitudes and wave numbers have been

bifurcation by frustrated drift¢Sec. IV C 2. fixed atF,=F,=0.0R{ and atk, = 2k, k,= 3k with k=0.2. In(b)
the drift velocityvy is shown as a function of the modulation am-
1. Bifurcations into drifting patterns plitudesF,=F, for the phaseg,=8° and¢,=0.

Simultaneous modulations of the temperatures at both
boundaries or an undulated top boundary combined with 4
temperature modulation at the bottom plate may lead to th
drifting secondary flow at onset, where the drift velocity is a : . . . .
function of the relative phase between two modulations. In Fig. 7(a) the drift velocityv, is shown as a function of

a. Two temperature modulationk,=k,. For Rayleigh- th€ relative phaser; (¢,=0) for the wave number ratio
Bénard convection with Boussinesq fluidthe only ones Ki/ke=2/3 and at fixed amplitudes=;=F;=0.0R,
considered hejeand modulated temperatures at the top angvhereas in Fig. () the drift velocity is shown as a function
bottom plates with equal wave numbeks,=k,, we find of the modulgtlon amplltuples and_ at a fixed phase dlfference
only stationary bifurcations from the primary into the sec-¢1=8°- In Fig. 7a) the drift velocityvp passes zero with a
ondary flow for arbitrary values between the relative phaseSmaller slope at the relative phases= 60°, 180°,..., and
@1— @5, Which is in agreement with a previous analysis‘?hanges rap|dly,.however,.smoothly, from its maximal posi-
[30]. tive value to its negative one near the phases

b. Two temperature modulationsk, /k,=2/3. Taking =0°, 120°, 240;. . .. Near the Iatt_er phase dlfferenc_es the
commensurate ratios between the modulation wave number€utral curve develops as a function of the phase difference
for instance,k;/k,=2/3, then the eigenvalue spectrum of Of two neighboring minima. Both correspond to two slightly
Eq. (3.67) is changed. It becomes complex for a large rangéjlfferent e|genva_lues in the spectrum whereas the imaginary
of the phase differences, — ¢,, without having degenerate Parts of the eigenvalues and therefore the drifts
complex conjugate pairs. When the eigenvalue with the largv@nish  continuously by  approaching¢,=nx120°
est real part becomes critical, namely, when pie(o)] (”:01132’- ) )
=0 and Im()=0 are met, the corresponding critical mode ~ Varying the phasep, at the bottom boundary instead of

on, discussed below, where one has two degenerated com-
lex conjugated eigenvalues and thus two degenerated drift
irections.

is a drifting (traveling wave with the drift velocity the phasep, at the top boundary, the zeros of the drift ve-
locites vp are shifted from 60°,120°,.., to
90°,180°,. . ., and therapid changes afp are shifted from
W 0°,120°,240°, .., t0180°,360°,. . ., respectively.
Up (42)

Drifting solutions induced by temperature modulations at
both boundaries have been found earlier only for non-
Boussinesq fluids, whereas for the discussed example differ-
By turning the relative phase,;— — ¢4, the signs oflvo. and  ent modulation wave numbers are enough. The situation is
vp are also reversed, which is different for a Hopf bifurca- similar for wave number ratids, /k,=1/2 or 2; however, as
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© 29, 0.01 0.02 0.03 0.04 0.05
-1.0 . . . . s . _
0 30 60 90 120 150 180 modulation strength F2/ Rc ( o 0.02)
phase shift ¢, b) 0 ' ' ' ‘
[a]
>
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FIG. 8. The drift velocityvp=w./q. of the secondary flow at 's
threshold is shown as a function of the relative phase(deg i 05k |
between the temperature modulation at the bottom plate and a wavy % e
top boundary. Modulation amplitudes have been fixed at %
Fo=0.02, F,=0.0R] and the modulation wave numbers are ;
ko=k,=k=0.2. 5 - | . —
=19 0.01 0.02 0.03 0.04 0.05

in the case discussed above the velocities in physical units ¢
are rather small. modulation strength F0 (F2/ Rc =0.02)
c. Way top boundary and temperature
modulation at bottom boundark,=k,. A wavy top FIG. 9. The drift velocity is shown as a function of the modu-
boundary and a periodic temperature modulation at the boﬁ- . : .
L . . . . lations. In(a) as a function of the temperature modulation at the
tom boundary is in various aspects equivalent to the situatio

. S .. _bottom plateF, at a fixed wave number&,=k,=0.2, phase
of two wavy boundane;, as shown in Fig. 1. However, it |s¢2:1090, and a geometric modulation amplituélg=0.02. In(b)
analytically and numerically much simpler.

: . .as a function of the geometric modulation amplitude,
In contrast to the temperature modulations considered INF = 0.0R"

rigid boundary conditions
the last paragraph we observe already drifting patterns for a o) (9 Y "

combination of a wavy top boundary with a temperatureconsidered in this section, lead to a qualitatively new bifur-

modulation at the bottom plate at equal wave numbergation scenario. As explained in the following and compared
ko=k, and finite values for the relative phagg. This is  tg the situations discussed above in Sec. IV C 1, the major
shown in Fig. 8 for rigid boundary conditions, where the gifference is that complex conjugate pairs of eigenvalues
drift velocity of the critical eigenfunction is plotted as a may occur in the eigenvalue spectrum. Two of them also
function.of the re]ative phase,. In these calculations the may become critical, in which case one has a Hopf bifurca-
modulation amplitudes and the wave numbers have beefjgn.

kept fixed atFo=0.02,F,= 0.0R;, andko=k,= 0.2. Itis It was shown in the previous section that modulations of

remarkable that the drift velocities are now three orders okqual wave numbers for the undulated top boundary and the
magnitude larger as for two temperature modulations. Thenodulated bottom temperature,=k,, lead to a secondary

drift velocity has zeros at multiples of 180° and it is anti- state drifting either to the right @ ¢,<180°) or to the left
symmetric with respect to these zerosp(180°+ ¢,)

=—vp(180°— ¢,). The extrema o are atp,=~109° and
at ¢,=251°, etc. for the chosen parameters. For free bound- 0
ary conditions the qualitative behavior is the same, however,
the absolute values farp are larger by a factor of about 3.
The drift velocityvp of the critical eigenstate increases
with the two modulation amplitudes, andF, as shown in
Fig. 9 at fixed values oky=k,=0.2 and the relative phase
¢,=109°. In Fig. 10 we show additionally the dependence
of the drift velocity on the modulation wave numbers
ko=k;=k and for fixed modulation amplitudeS,=0.02,
F,=0.0R] at a fixed relative phase,=109°. The nearly
linear growth of|vp| with k is mainly related to the long 5 o3 02 05
wavelength approximatioin,,>d. At large values for the ' ' '
wave numbek, |vp| is expected to be small again. modulation wave numberk

Vb

-3

-0.51 1

drift velocity 10

2. Hopf bifurcation by frustrated drifts FIG. 10. The drift velocityvy, as function of the modulation

A wavy top boundary and temperature modulation at thevave numbetk,=k, is shown, with the other parameters fixed at
bottom boundary with wave number ratig /k,=3/2, as Fy=0.02,F,=0.0R;, ¢,=109°.
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0.03—— - X
) o005 ‘ T ' ' - © i \\
®, ~ E
2 . g
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g o 0020 Hop
: N
€ ° ‘ ' T C_é. :
o] < 0.01r
E L
: o S o)
o } statlonary
-0.005[ . , ] . , 5 [} T S S P Lo ]
b) Oof ' ! ' T E 0 0.01 0.02 0.03 0.04 0.05
geom. amplitude Fo
-0.1f E
E_ 7‘2 FIG. 12. In the plane of the modulation amplitudeg and F,
5 -0.2p E the ranges are indicated where the transition from the primary flow
o to the secondary flow takes place via a stationary or a Hopf bifur-
-0.3fF E cation (shaded region This figure indicates that finite modulation
amplitudes are needed to induce a Hopf bifurcation. The ratio
_04b E ko/k,=2/3 between modulation wave numbers for the wavy top
L . ! i boundary and the temperature modulation at the bottom boundary
0 30 60 90 . 120 150 180 have been used with a relative phagg=90°. Parameters: rigid
phase shift ¢, boundary conditionsg=0.2, ko= 2k, andk,=3k.

FIG. 11. In(a) the imaginary parts Imf; ;) of the two eigen- because at these values both drift directions have the same
values with the largest real parts are plotted as a function of thehreshold and thus there is no uniquely preferred drift direc-
relative phasep, (deg. In (b) the real part Raf,) of the eigen-  tion anymore. Immediately above threshold the nonlinear in-
value with the second largest real part is given. We can see that graction between both drift directions favors a superposition

®,=*90° the real parts of both eigenvalues vanish and the imaginf hoth linear drifting modes and one has standing waves
nary part has the same modulus. For these phase shifts the onset

the secondary flow takes place via a Hopf bifurcation. The follow-

The sign of the drift velocit changes abruptly at
ing parameters have been used: modulation amplitéges0.02, g Yvo g Py

i 90°,270°, . .. by the interchange of the two critical complex
— r _ 1 y
E:gl'(oﬁch :‘2% 2the modulation wave numbere,=2k and eigenvalues. The transition into the secondary flow becomes
2 - stationary (p=0) at ¢,=0°,180°, ... andw, as well as

the drift velocity vp, changes its sign smoothly at these

(180°<¢,<360°), such as indicated in Fig. 8. In thesevalues, as indicated in Fig. ().
cases the secondary state is drifting for rather arbitrary val- The degeneracy of two critical complex conjugate eigen-
ues for the amplitudeB,, F, and modulation wave number values atp=90°,270°, ... (Hopf bifurcation by frustrated
k. Only at phasesp,=0°,180°,.. ., thebifurcation from  drifts) does not occur at arbitrary combinationskf, F,,
the primary state is stationary and the imaginary paras andk. Moreover, as indicated in Figs. 12 and 13 these pa-
well as the drift velocity changes its sign by passing thes@ameters have to be beyond certain thresholds. In Fig. 12 the
values. phase¢,=90° and the wave numbers are fixdd;= 2Kk,

Changing the phasep, for the wave number ratio k,=3k, k=0.2. The amplitude&,,F, are varied, whereby
k,/ko=3/2, the secondary state occurs via a right driftingthe Rayleigh number has been always adjusted appropriately
pattern for phases,0¢,<<90°, and via a left drifting pat- to reach the critical point max Re;]=0. The shaded region
tern for 90°<¢,<180°. This is indicated in Fig. 14) indicates the amplitude combinatiog, F,, where the
where the imaginary part®; ,= Im(o; ) of the two eigen- transition from the primary into the secondary flow happens
values with the largest real parts are plotted. In Fighlihe via a Hopf bifurcation by frustrated drifts. Otherwise the
second largest real pamk,= Rg o,], is given, while the transition is stationary. In Fig. 18,=0.02 is kept fixed and
largest real part is kept critical, max Re]=0, by adjusting F, as well as the modulation wave numblderare scanned.
RtoR;. Again rigid boundary conditions and the wave number ratio

The moduli of the imaginary parts of both eigenvaluesk,/k,=2/3 have been used. At very small and at larger val-
(w;) increase with ¢, and become equal atp, ues ofk the Hopf bifurcation disappears. In that sense there
=90°,270°,. ... Atthese phases the real part of the seconds also a threshold for the modulation wave number.
largest eigenvalue vanishes too (R¢]=0= Rqo,]) and The phase boundaries in Figs. 12 and 13 are not smooth
the bifurcation from the primary flow into the secondary flow everywhere, because the neutral curve has several local
is oscillatory with two degenerated complex-conjugated ei-minima separated bly, as indicated for a special case in Fig.
genvalues. One has a Hopf bifurcation at this crossing point. When parameters are changed, the absolute one of these
This Hopf bifurcation is a rather novel phenomenon, whichlocal minima is not always the same—on the stationary as
has been predicted recently for a mof&2]. We call this  well as on the Hopf branch. At parameters where the abso-
phenomenorHopf bifurcation induced by frustrated drifts lute minimum of the neutral curve changes its positiorkin
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0.010 , ; There is a significant difference between the eigenstate on
1 the stationary and the Hopf branch. The eigenfunction at the
i 1 stationary branch has two periods on the lerigttas shown
Hopf in Fig. 14 and the oscillatory state has only one spatial period
on the same length. The stationary bifurcation is therefore
0.005[ I harmonic with respect to the smaller of the external modula-
I ] tions, ko= 2k, and the oscillatory one is subharmonic with
\ ] respect toky,. The opposite traveling wave state is also lo-
stationary 1 calized in space and subharmonic, however, translated in
] space byL/4. The subharmonic behavior is an essential sig-
9% T o om0 0.25 nature of the Hopf bifurcation by frustrated drifts. This is in
contrast to the drifting solutions discussed in Sec. IVC 1,
modulation wave number k where all solutions were harmonic with respect to the small-
est external wave number.

FIG. 13. At parameters in the shaded range the transition from
the primary to the secondary flow takes place via a Hopf bifurca-
tion. The geometric undulation amplitude was fixedFat=0.02, At the phase boundaries in Figs. 12 and 13 there is an
the wave numbers d&,=2k, k,=3k, and the phase at,=90°. interesting competition between a stationary and an oscilla-
The amplitude of the temperature modulation is given in units oftory instability, a so-called codimension-2 bifurcatifsg],
the critical Rayleigh number of the unmodulated c&&e=1708  which we analyze in more detail in this section. For that

[+

/R

temp. amplitude F2

3. Codimension-2 bifurcation

(rigid boundary conditions purpose the phase,= /2 between the two modulations
and the ratioky/k,=2/3, are kept fixed.
space(from one local minimum to another onehen a dis- It is already indicated in Fig. 5 for a simpler case that the

continuity for the tangent of the phase boundaries might ocneutral curves for the stationafgt) and the Hopf branch
cur, as can be seen for a few positions at the phase boundafli) may have several local minima—also near the phase
in Figs. 12 and 13. boundaries in Figs. 12 and 13. The location of five such local
For a fixed amplitudeF,=0.02 we show in Fig. 14 the minima on the stationary branch are plotted in Fig(bl&s
eigenfunctions of the secondary flow at three different values function of the temperature modulatién and for param-
of F, (¢,=90° andk=0.2). In Fig. 14a) the velocity po- eters near phase boundary in Fig. 12. The respective thresh-
tential of the secondary flow at onseab, is shown for a olds are given in Fig. 1®) wherebyk=0.2 andF,=0.02
stationary bifurcation at parameters just outside the shaddthve been kept fixed. The solid line in Fig. 15 corresponds to
region in Fig. 12. In Fig. 1) @ is shown for a localized the Hopf branch. The local minima on the stationary branch
traveling wave state at onset of the secondary flow for are separated roughly by the wave numketVith increas-
parameter set just above the separation line and in Fig) 14 ing values of F, the minima of the neutral curve at
far inside the shaded region of Fig. 12. All three states argS~3.25 and atq3~2.92 become narrower and narrower
plotted for the lengtt. =2=/k. In the case of traveling wave and then coalesce to a Hopf branch with a higher threshold
states the envelope is fixed and the phase is traveling. than the lowest stationary one.

a) F2 =0.0020 RL (stationary) potential @

- : FIG. 14. The velocity potentiab at the onset
N\ NN AN NN AN/ \N~——~/\/  ofthe secondary state is shown (& the form of
0 5 10 15 20 25 30 35 40 45 50 55 60 the eigenstateb is shown in the stationary re-
r otential ® gime, in (b) just inside the Hopf regiméindi-
b)F, = 0.0087 R; (Hop) ’ cated in Fig. 12 and in(c) deep in the Hopf
regime. k=0.2F;=0.02, and ¢,=90° have
been used. The horizontal length in the figure is
L=2mx/k. The stationary eigenstate i@ has
two periods in between this length and the oscil-
/ . ; . . . : : : latory states, shown itb) and (c), have one pe-
0 5 1 1520 25 30 35 40 45 50 55 60 riod on the given length.. Therefore the station-
¢) F, = 0.0100 R (Hop) potential @  gry state is harmonic with respect to the
modulation wave numbedg,= 2k and the oscilla-
tory ones are subharmonic.
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FIG. 15. In(a) the thresholdRS"™ and in(b)
the critical wave numbersyS*™' at the local
minima of the stationary bifurcation branches
b) (dashed-dotted lingsand the Hopf bifurcation
3.4F ] (solid line) are shown as a function of the ampli-
i tude of the thermal modulation at the bottom
5 - plate F,. The rest of the parameters have been
-g 3.2f qs‘ ] fixed at the same values as in Fig. 12.
[
2 L
S 3.0f
® ‘ H
= %
S 2.8¢
2.6 - * ' . =
0 0.001 0.002 0.003 0.004 0.005
temp. modulation strength F 5 / RL
The local minimum on the stationary branchgdt3.09 Whenever the solid line in Fig. 16 terminates at the neu-

is the absolute minimum for small values I6§. Increasing tral curves of the stationary branch@sshed lingsthe Hopf

the amplitudeF, then nearF,~0.002R! the local mini- frequency w, vanishes and one has a double-zero eigen-
mum atqS~2.72 becomes the absolute minimum of the neualue. This behavior is very similar to the codimension-2
tral curve. At even larger values fcﬁ2>F2C~0.OO378R£ bifurcation occurring in _t_)inary_ fluid conv_ectio['59_, 64]

the Hopf branchsolid line) in Fig. 15 becomes the absolute Apart from two r_1ear|y critical egenvalues in the vicinity of
minimum, with a lower threshold than the lowest minimum F2c (Fo andk fixed) all other eigenvalues have strongly
atq'~2.72 of the stationary branch. This latter exchange oftegative real parts and are damped. In this situation the
stability takes place at the phase boundaries shown in Figg_-order character[stlc polynomial, equwalen't to E8.67),

12 and 13. NeaFZ%O.OOZRE two stationary instabilities can be separated mtg one of the order2 and into a further
with different wavelength are competingdashed and one of second order:

dashed-dotted The nonlinear interaction between both 5

modes may give rise to interesting phenomena near the phase oc°—e(R,q)o—d(R,q)=0. 4.9
boundaries in Figs. 12 and 13.

Since we are focusing mainly on the occurrence of theThis reduced polynomial describes the dynamics of the two
Hopf bifurcation by frustrated drifts, we show in Fig. 16 the nearly critical eigenvalues in the vicinity of the
structure of the neutral curve in more detail near the phasgeodimension-2 poinE,.. With the arguments following Eq.
boundary for three different values df,, around the (3.23 the conditionse=0 andd=0 give the neutral curves
codimension-2 valu€ ,.~0.0037&R{. The dashed lines are R$*{q) and R$™(q), respectively. A similar approach as
neutral curves belonging to the stationary branch with thebseen used to describe the codimension-2 bifurcation in bi-
two local minima located ag®~3.44 andg®~2.71 in Fig.  nary fluid convection. For that situation also a generalized
15(b). The solid line is the neural curve of the Hopf branch. amplitude equation has been deriéd], which reproduces
In Fig. 16a the neutral curves are shown for the dispersion relation given in E¢.3 for a special case.
F,=0.0025<F,. below the codimension-2 poif€CTP), in From the nonlinear analysis of that equation interesting dy-
Fig. 16b) at the CTPF,=F,., and in Fig. 1€c) beyond the namical behavior has been found near such codimension-2
CTP atF,=0.01>F,.. Starting fromF,. and decreasing bifurcations[63, 64].

F, then theq range of the Hopf branch becomes narrower The essential features of the neutral curves shown in Fig.
and vanishes in a complex manner near some finite value fdr6 can be reproduced by a second order polynomial given in
F,~0.002%R;. Eq. (4.3) with the explicit expressions for the coefficients:
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FIG. 16. The neutral curves for the stationary bifurcation 0.10E, !

n n " 1 N ) n
RS(q) (dashed lingand for the Hopf bifurcatiomR,(q) (solid line) 0.10 0.15 0.20
are shown for three different values of the thermal modulation am-
plitude F,, whereas the rest of the parameters are kept fixed at the
same values as in Fig. 15. Ifa) F,=0.0028R(< Fa, in ()

modulation wave number k

F,=F, =0.003R;, and in(c) F,=0.01R;>F, . The Hopf fre- FIG. 17. In (a) the critical Rayleigh numbeR;, in (b) the
quency always vanishes when the Hopf brafsblid line) meets  critical wave numben!, and in(c) the Hopf frequencyw, for
the stationary branctdashed ling parameters along the solid line in Fig. 13 are shown.
e(R,Q)=¢—BQ?, (4.4  boundary in Fig. 13. Therefore one expects similar bifurca-
tion behavior wherever one crosses the phase boundaries in
o2 Figs. 12 and 13.
d(RQ)=&~n— o +aQ’~yQ% (4.5

D. Linear coefficients of the amplitudes equations
with above the Hopf bifurcation

The coefficients in the amplitude equations defined in
Q:q—q'c", Sec. Il C describe the physical quantities such as the Hopf
frequencyw,., relaxation timery, coherence lengt, lin-
ear frequency shiftcy, group velocityvy, and linear fre-
quency dispersio@écl. These characterize the linear prop-

Herei f h f th | h erties of the patterns near threshold to a great extent. Hence,
Hereflg,B reh ects the (;urvature of the n?“”ﬁ ?urve ?tr;‘ €we have plotted them in Fig. 18 for a typical parameter set as

opf branch andy is a ree parameter to fix the form of the o ¢tion of the modulation amplitude, (other parameters
neutral curve for the stationary branch as close as possibl

Gre the same as in Fig. J16Below F,. (dotted liney the
From c=d=0 the neutral curve for the stationary branch g L 2 { >

. . . .. uantities correspond to the coefficients of the stationary bi-
can be determined, which has obviously two minima. Th % P y

i - fh ral f the stati b h Surcation and beyoné . to the coefficients of the amplitude
WO minima of the neutral curve of the stationary branc areequation near a Hopf bifurcation. The discontinuity of the

the essential difference from the polynomial discussed earlieé -
. ) . . X oherence lengtl, [Fig. 18e)] reflects the exchange of the
in the context of binary fluid convectid9, 64. The modi- absolute minimum of the neutral curve from one local mini-

fied corresponding generalized amplitude equation is dISFnum to another, which have different curvatures at the mini-
cussed elsewhere.

Along the phase boundaries in Figs. 12 and 13, the criticarlnum'
guantities at the Hopf branch, the critical Rayleigh number
RCH, the critical Hopf frequencyw., and the critical wave
numberqcH vary only slightly. This is shown explicitly in Our quantitative analysis gives an estimate where the phe-
Fig. 17 where those quantities are given along the phaseomenon of Hopf bifurcation by frustrated drifts, predicted

a~8(q3-qg)?,  nxFy—Fa.

V. SUMMARY AND CONCLUSION
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small modulation amplitudes. Thus, this observation seems

25 : O X X .
a) to justify a perturbation expansion with respect to small val-
107° o, ues for the modulation wave numbdgs(as we did already

here and with respect to small modulation amplitudes

o ’ Accordingly, we are applying a perturbation approach
b) 55 [58, 65 to our problem in a forthcoming work, where we
1072 1 e . describe the derivation of a generalized Ginzburg-Landau

equation including the external modulatiofs2, 66. The
preliminary analysis shows that the onset of the secondary
flow, calculated in terms of this generalized amplitude equa-

1074 g O tion, agrees very well with the results presented H&@&.
0 \ Furthermore, the analysis of the amplitude equation shows

-2 that the onset of the secondary convection via Hopf bifurca-
d) 0 : tion by frustrated drifts is supercritical and standing waves
107% v /// are the preferred state beyond the bifurcation. This is differ-
g ent from several other real systems, such as, for instance, in
-8 convection in binary fluids, where the Hopf bifurcation is
€) 1 subcritical[59, 67]. Tertiary bifurcation from standing waves
2 .2 , into further structures is also covered by that generalized
10 &, Ginzburg-Landau equation.
0 In contrast to Boussinesq fluids considered in this work,
) of 4 in non-Boussinesq fluids Hopf bifurcation by frustrated drifts
can be expected even for flat boundaries with modulations of
c, ey the temperatures at the top and bottom bound#6&k
Drifting patterns induced by broken symmetries occur
-850, 0.005 0.010 also in electroconvection in nematic liquid crystpé8—71],

where the symmetry is broken by a pretilt angle between the
orientational field in nematic liquid crystalghe director

field) and the top or bottom boundary. Within a model equa-
tion, which covers the essential symmetries for electrocon-

FIG. 18. Coefficients of amplitude equatié®.72 as a function ~ Vection in nematic liquid crystals with spatially periodic
of the modulation amplitudE, . The other parameters are the same Pretilt, it was shown that Hopf bifurcation by frustrated drifts
as in Fig. 15. The dotted lines are the physical quantities belovg@n also be expected in that syst¢r2]. While the Hopf
F,. on the stationary branch and beyoRg, for the Hopf branch, bifurcation by frustrated drifts was investigated in the
which are indicated by the solid lines. present work for a quasi-one-dimensional situation, also in-

teresting orientational oscillations of convection rolls are
n Predicted for two-dimensional anisotropic systdmg].

Another experimentally interesting configuration is the
wave number rati&, /ko= 2. For this ratio one obtains simi-
lar scenarios for Hopf bifurcation by frustrated drifts at
slightly different relative phases and modulation amplitudes.
The detailed results of this case will be described elsewhere.

In the present work have we analyzed the onset of sec- One can imagine further interesting nonlinear phenomena

ondary convection for temperature modulations at one or artelated to Hopf pifu_rcation by fru_strate_d drifts, especially for
two boundariestop and bottoalone as well as in combi- well-defined periodic pretilt configurations in electroconvec-
nation with an undulated top boundary. While we found pat_tion in nematics. An essential point for the occurrence of all
terns drifting in a specific direction for temperature modula-SUc dynamical phenomena induced by frustrated drifts is

tions at both boundaries alone, we find a Hopf bifurcation bythe interplay between two types of periodic structures, one

frustrated drifts only when an undulated boundary is Com_with a large wavelength and the other one with a short wave-
ength. In electroconvection the interaction of a pattern of

bined with a temperature modulation at the same or the o ﬁhort wavelength with one of long wavelength occurs spon
osite boundary. Choosing an undulated bottom boundary i . ; )
P y g y taneously beyond secondary bifurcatidid, 73. The re-

combination with a temperature modulation at the top ™ '~ ) .
boundary gives the same results, only the actual numbers fc?r'"”t'.ng dynamic str_uctures 9f defect Iatqces anq chevrons
the relative phases are shifted where the various transitio h|b|t'also dy’?am'c behavior. Thug, It s very likely that
take place. For two undulated boundaries without tempera—ynamlc behawor_ of patterns, as Q'SCUSSEd in the present
ture modulations we expect qualitatively similar resuItSWork, are a generic result of interactions between patterns of
whenever we have not considered this case explicitly in out'®"Y different wave numbers.
calculations.

In our approach we made no assumption about the
strength of the modulation amplitud€s. However, it turns We are grateful to H. Miler-Krumbhaar for useful dis-
out that the central phenomenon of this work, the Hopf bi-cussions and to the German science foundatRG) for
furcation by frustrated drifts, occurs already for relatively financial support.

temp. modulation strength F2/ RL

for a model systemi52], can be expected in experiments o
Rayleigh-B@ard convection with modulated boundaries. We
did our calculations in the limit of large Prandtl numbers
(approximately valid, for instance, for olive hiHowever, a
preliminary work shows that finite values for the Prandtl
number will change the effects only quantitatively.
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APPENDIX: TRANSFORMATION The derivatives with respect totransform as
TO FLAT BOUNDARIES
The partial derivativesi,, d,, take the following form in aQIAn‘;;' (A3)
terms of the new coordinate$,n, according to the transfor-
mation (3.27): Therefore the transformed Laplacianis up to the leading
orderO(k) of the form
,=Ad,, d=0ds+nBd,. (A1)
_ 2, p22 2
[A(¢) and B(¢) are defined in Egs(3.29 and (3.32.] A=0g+ A9, +27Bd.0,+ O(KY). (A4)
B(¢) is of first order in the modulation wave numberThis o _
allows in the limit of small values ok a considerable sim- Similarly one obtains
plification of the transformation of higher-order derivatives
n. 2_ 4 4 4 3 242 92 2 2
AR A%=0;+ A%, +4nBagd,+2A%d;0,+8A’BI.0;,
Jy=ag+nnBay 1, +0(k?). (A2) +4AB a5+ O(K?). (A5)
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