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Two-dimensional thermal convection in a fluid layer between two rigid walls at different mean temperatures
is investigated. The top container boundary is undulated and the temperatures at the top and bottom boundaries
are spatially periodic modulated, with modulation wavelengths large compared to the thickness of the fluid
layer. The continuous translational invariance in the fluid layer is broken by these spatial modulations. Con-
sequently phase differences between two periodic modulations give rise to an interesting drifting pattern, with
the drift direction depending on the sign of the relative phase between the modulations. At distinguished ratios
between the modulation wave numbers and relative phases the onset of convection changes as function of the
modulation amplitudes from a stationary into an oscillatory one: We call this phenomenonHopf bifurcation by
frustrated drifts. Possible experiments are described in detail where this phenomenon can be expected.@S1063-
651X~96!05805-5#

PACS number~s!: 47.20.2k, 03.40.Gc, 47.54.1r

I. INTRODUCTION

Fluid systems, especially Rayleigh-Be´nard convection
@1–4# served during the recent era of enormous progress in
nonlinear science as variable and quantitative model systems
for pattern formation, chaos, and turbulence@4–10#. Spa-
tially extended experimental setups of high symmetry are
often appropriate to address questions from those fields. A
system of high symmetry is, for example, thermal convection
in a two-dimensional extended fluid layer between ideally
flat bottom and top container boundaries.

In actual fluid experiments effects of side walls and other
symmetry breaking deformations or imperfections at con-
tainer boundaries cannot be avoided in general. Related phe-
nomena may be kept small under certain experimental con-
ditions. However, during recent years the resolution in
experiments has been enhanced dramatically and even the
detection of thermal fluctuations became feasible in macro-
scopic pattern forming systems@11–14#. Therefore, it be-
comes increasingly likely that even small imperfections
modify detected signals in an unexpected and puzzling way
with such high experimental resolutions. One may be in-
clined to call such deviations from perfect geometries dirty
effects. On the other hand, as discussed in this work, they
also give rise to interesting new phenomena, which are not
present in systems of high symmetry.

Side walls, for instance, lead to restrictions of the band of
stable wave numbers for cellular patterns@15# or may select
the orientation of convection rolls@16–19#. In traveling wave
systems, such as thermal convection in fluid mixtures, they
can trigger reflection effects and other dynamic phenomena
@20–22# or they induce dynamic structures in rotating
Rayleigh-Bénard convection@23–25#. Interesting nonlinear
wave number selection processes@26–28# or even phase dif-
fusion@28, 29# are triggered by reduced symmetries, namely,
by a slow and/or a smooth~nonperiodic! variation of the
thickness of the fluid layer and a smooth variation of the
temperature difference across the fluid layer. A periodically
varying thickness of the fluid layer, achieved by undulated
top and bottom container boundaries and a phase shift be-
tween both, leads to a drifting cellular pattern as shown in a

recent experiment@30#. The drift direction in this example
depends on the relative phase between both periodic modu-
lations.

Statistically distributed imperfections at container bound-
aries may lead to localized cellular structures at the threshold
of thermal convection, similar to those already observed for
gravity waves@31, 32#. Such localizations modify the bifur-
cation behavior of cellular structures in a characteristic man-
ner, as shown for a model system@33#. Localized cellular
patterns occur also in convection in porous media@34, 35#.

Like finite size and disorder effects in phase transitions
near thermal equilibrium it is also an important issue to un-
derstand how they affect pattern formation far from equilib-
rium. Natural phenomena occur in imperfect environments,
thus the understanding of finite size and disorder effects on
pattern formation may also help in interpreting correctly
many phenomena such as geology or meteorology in terms
of well defined laboratory systems.

To gain some theoretical insight about the effects of
roughness in pattern formation it is often helpful to replace
the roughness by periodic modulations. One may replace, for
instance, imperfections at container boundaries in convection
by temperature variations at the boundaries and undulations
of the boundaries itself and analyze their consequences for
the onset and nonlinear behavior of convection. There are a
number of investigations about the effects of periodic tem-
perature modulations@30, 36–38# and boundary undulations
in Rayleigh-Bénard convection@30, 38–41#. An interesting
case occurs when the wave number for the external modula-
tion, qM , is nearly commensurate to the critical wave num-
ber of the cellular patternqc : qM;1,2,3,4qc . For this case
commensurable-incommensurable transitions in nonequilib-
rium systems occur as a function of the deviation from the
commensurate ratios@42–47#. In quasi-two-dimensional
convective systems a single periodic modulation of external
parameters can lead to undulated or two-dimensional quasi-
periodic patterns@48–50#, which have some similarity to
spontaneously occurring wave number competition in con-
vection above secondary bifurcations@51#.

These examples show that a number of interesting effects
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in pattern formation are related to finite size or inhomogene-
ity effects. In this work we focus on a different type of pe-
riodic boundary modulation~as indicated below! being in
some aspects closer to statistically distributed irregularities.
We consider periodic temperature modulations at the top or
bottom ~or both! boundary of a cell for thermal convection
combined with an undulation of one boundary.

For such a geometry we find a dynamic phenomenon, the
so-call Hopf bifurcation by frustrated drifts. This effect is
qualitatively described in Sec. I A and in more detail during
the rest of the paper~see Secs. II–IV!.

A. Qualitative description of the main result

It is well known that convection rolls occur in a horizontal
layer heated from below. The difference,DT5Tl2Tu , be-
tween the temperature at the bottom plate,Tl , and at the top
plate,Tu , must increase beyond some thresholdDT.DTc to
induce convection@1–3#.

When the top and the bottom boundaries in a Rayleigh-
Bénard convection cell are plane and parallel, then below
convection onset,DT,DTc , heat is transported diffusively
through the fluid layer and convectively beyondDTc . In the
presence of an undulated boundary there is already convec-
tive flow with a periodicity of the external spatial modulation
for arbitrary values of temperature differencesDT. This flow
may be weak for small temperature differencesDT!DTc ,
however, it can be already considerable forDT;DTc , de-
pending on the modulation amplitude of the boundary. The
presence of thisprimary flowhas various consequences for
the onset of the ‘‘usual’’ convection rolls, which we call
secondary flow. Their wavelength is mainly determined by
the mean distance between the top and bottom platesd and
less by the external modulation. When the top and the bot-
tom plates are undulated by the same wave number and both
modulations are in phase, as indicated in Fig. 1~a!, then the
fluid layer thickness is everywhere the same and the onset of
the secondary convection is still stationary. However, if there
is a relative phase shift between both modulations, as indi-
cated in Figs. 1~b! and 1~c!, then the secondary flow~con-

vection rolls! drifts @30#. The drift direction depends on the
sign of the relative phase between the undulation of the top
and bottom boundary whereas the velocity depends on the
modulus of the phase shift and on the amplitude of the
modulations.

For a finite phase shift between the boundary modula-
tions, the thickness of the fluid layer is spatially varying and,
as a consequence, the envelope of the secondary flow fields
are spatially modulated, whereby the modulation wavelength
is identical with the externally imposed wavelength.

Boundary modulations and their consequences are inter-
esting by themselves, but they are also appropriate to model
some aspects of heterogeneities occurring at the boundaries
of the fluid container. Spatially homogeneous phase shifts
between two periodic boundary modulations, such as in Fig.
1, are rather unlikely in real systems. A geometry as sketched
in Fig. 2, where the relative phase changes periodically in
space, seems more appropriate to mimic some aspects of
statistically distributed imperfections at boundaries. Then the
virtual drift directions alter periodically between neighboring
phase jumps. Hence, the spatially averaged local drift direc-
tion would vanish, similar to that expected for randomly de-
formed top and bottom plates.

How might periodically reversed drift directions, corre-
sponding to periodically repeated phase jumps such as in
Fig. 2, affect the onset of the secondary flow? According to
Figs. 1~b! and 1~c! one expects drifting secondary flow in
every interval of homogeneous phase shift. However, since
the virtual drifts have opposite drift direction in neighboring
intervals, they may compensate each other and the secondary
convection could be stationary and nondrifting. A further
possibility seems imaginable. The secondary flow drifts in
every interval of homogeneous phase shift and, in regions
where the phase shift changes its sign, there might be a
source or a sink for the drifting waves, depending on whether
the drifts point to each other or from each other. We found a
third possibility: these spatially varying virtual drift direc-
tions change the eigenvalue spectrum in such a way that
above critical amplitudes of the boundary modulations the
onset of convection is changed from a stationary into a os-
cillatory bifurcation. We call this phenomenonHopf bifurca-
tion by frustrated drifts. It has been recently predicted within
a generalized Swift-Hohenberg equation@52# and the major
task of this work is to discuss this phenomenon in terms of
an experimentally accessible system, such as Rayleigh-
Bénard convection.

FIG. 1. A sketch of a Rayleigh-Be´nard convection cell with
wavy top and bottom boundaries. If the periodic undulations of the
two boundaries are in phase, as shown in~a!, then stationary con-
vection rolls occur above threshold. A phase shift between the two
boundary undulations, as indicated in~b! and ~c!, leads to drifting
convection rolls above threshold and the drift direction depends on
the sign of the relative phasew.

FIG. 2. A design of a convection cell is proposed that combines
the geometry of Fig. 1~b! ~right part! and of Fig. 1~c! ~left part!. The
sign of the relative phase shift between the modulations of the top
and bottom plates is reversed by a phase jump of the modulation on
the bottom plate. The opposite sign in the left and right parts of the
cell leads to virtually drifting convection rolls, which are frustrated.
We will show that such frustrated drifts induced by periodically
changing phase shifts lead to a new phenomenon:Hopf bifurcation
by frustrated drifts.
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To show by explicit calculations that this Hopf bifurcation
by frustrated drifts occurs also for Rayleigh-Be´nard convec-
tion, we actually replace in this work the ‘‘didactic’’ geom-
etry with phase jumps in one boundary undulation, as shown
in Fig. 2, by a smoother and essentially equivalent geometry
of the convection cell. We choose a geometry as displayed in
Fig. 3. For this convection cell the top boundary is undulated
and the temperature at the bottom boundary is modulated,
whereby the chosen wave numbers of both modulations have
the ratio 2/3. Analytically, such a smooth geometry is much
simpler to deal with and this choice of a cell design might
have experimental advantages. It seems easier to change the
amplitude of the temperature modulation by varying the lo-
cal heating in an experiment. Changing the amplitude of
boundary undulations would require several experiments
with different cells of different modulation amplitudes for
the boundary deformation. Nevertheless, we do need at least
one boundary undulation to break the up-down symmetry,
which is essential for the occurrence of the phenomenon
Hopf bifurcation by frustrated drifts. With two temperature
modulations only, this effect will be absent for Boussinesq
fluids.

B. Description of the content

In Sec. II the basic equations for thermal convection are
summarized and the boundary conditions as well as the
boundary modulations are specified. In Sec. III we give ana-
lytical expressions for the basic flow under modulated con-
ditions and we describe the linear stability analysis of the
periodic basic flow in the limit of long wavelength modula-
tions. In Sec. IV the numerical analysis of the equations as
presented in Sec. III is given. The primary flow as well as the
properties of the secondary flow at threshold are presented.
With Sec. V we finish with a few concluding remarks.~A
few selected aspects have been already described in two
short communications@52, 53# and a more extended descrip-
tion of a part has been given in Ref.@54#.!

II. BASIC EQUATIONS AND GEOMETRY

A. Basic equations

A simple fluid in a gravitational field under the action of
an external temperature gradient is considered. Our investi-

gations are restricted to a two-dimensional situation, with the
vertical z coordinate and the horizontalx coordinate. The
assumed incompressibility,

]xvx1]zvz50, ~2.1!

allows one to define the two velocity components in terms of
the scalar functionC:

vx5]zC, ~2.2a!

vz52]xC. ~2.2b!

In the Boussinesq approximation, which is considered here,
the equations of motion for the velocity potentialC(r ,t) and
the temperatureT(r ,t) of the fluid are@7, 55#

] tDC5nD2C2ga]xT2~]zC]x2]xC]z!DC,
~2.3a!

] tT5kDT2~]zC]x2]xC]z!T. ~2.3b!

We scale all lengths in units of the thicknessd, the velocities
in units ofk/d, the temperature in units ofkn/agd3 and the
time in units ofd2/k. Furthermore, we consider the limit of
large Prandtl numbersP5n/k@1. The scaled versions of
the equations of motions to be considered during this work
are

05D2C2]xT, ~2.4a!

] tT5DT1~]xC]z2]zC]x!T. ~2.4b!

B. Boundary conditions

Rigid as well as stress free boundary conditions for the
velocity are considered, however, with periodic modulations
of the temperature at the top and bottom plates as well as a
periodic undulated top plate. The bottom plate is located at
z50 and the top plate at

z511H0~x!

with

H0~x!5F0cos~k0x! and k05n0k. ~2.5!

Ideal conductivity of the bounding plates is assumed, which
leads to the following boundary conditions for the tempera-
ture field:

T~x,z!5Tu1H1~x! at z511H0~x!, ~2.6a!

T~x,z!5Tl1H2~x! at z50, ~2.6b!

with modulations

H1~x!5F1cos~k1x1w1! ~k15n1k!, ~2.7a!

H2~x!5F2cos~k2x1w2! ~k25n2k!. ~2.7b!

Only integer values forni are considered and therefore only
commensurate ratios between the modulation wave numbers
are allowed. For both the stress-free as well as the rigid-
boundary conditions, the boundaries are impenetrable and
therefore the vertical component of the velocityvz52]xC
has to vanish at the boundaries:

C~x,z!50 at z50,11H0~x!. ~2.8!

FIG. 3. An experimental design for a combination of an upper
plate of corrugated form and a temperature modulation at the lower
plate. The ratio of the wave numbers of the periodic undulation of
the top plate (k0) and the temperature modulation at the bottom
plate (k2) is k0 :k252:3. Thegray scale in the fluid layer indicates
the temperature field of the primary flow and along the solid lines
velocity potential of primary flow is constant. The curve below the
cell indicates the temperature variation at the bottom plate.
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For rigid ~realistic! boundary conditions also the horizontal
velocity parallel to the surfacev i5(n•¹)C must vanish:

~n•¹!C~x,z!50 at z50,11H0~x!. ~2.9!

n is the vector normal to the boundary. For stress-free
boundary conditions the first derivative of the velocity par-
allel to the boundary has to vanish:

~n•¹2!C~x,z!50 at z50,11H0~x!. ~2.10!

With the above definitions of the boundary conditions and
the introduced temperature scaling the well-known Rayleigh
number is now proportional to the mean temperature differ-
ence between the top and bottom plates:

R5Tl2Tu5
agd3DT

nk
. ~2.11!

III. METHODS OF SOLUTION: BASIC STATE, LINEAR
STABILITY, AMPLITUDE EQUATIONS

The modulation wavelengthlM is taken much bigger than
the thickness of the fluid layer,lM@d, for advantages ex-
plained in the following.

Without modulations at the boundaries, the primary state
has a linear temperature profile interpolating between the top
and bottom temperature, and there is no convective fluid mo-
tion. The undulations of the bounding plates or the modula-
tions of the temperature at the boundaries induce a primary
convective flow for arbitrary values of the mean temperature
difference,Tl2Tu . This primary flow and the temperature
field have the periodicity of the external modulations.

In the absence of modulations and forR above the critical
value Rc the linear temperature profile~primary state! be-
comes unstable against convection rolls~secondary state!
with a wavelength of the order of the layer thickness,
lc;d @3, 56#. For modulation wavelengths much larger than
the thickness of the fluid layer one has a clear separation of
the length scales of the primary and secondary fields of the
temperature and flow. Hence, a sharp threshold for the onset
of the secondary flow can be expected as in the unmodulated
case. Therefore, it is reasonable to divide the whole solution
into the long wavelength or homogeneous primary fields,
C̄(x,z), T̄(x,z), and into the short wavelength secondary
fields,F(x,z,t), Q(x,z,t):

~3.1a!

~3.1b!

Symbolically, the equations of motion given in Eq.~2.4! can
be written as

M] tuW 5LuW 1NW ~uW ,uW !, ~3.2!

with

uW 5S C

T D , uW 5uW 11uW 25S C̄

T̄
D 1S F

Q D . ~3.3!

M andL are linear operators andNW (,) describes the non-
linear parts of Eqs.~2.4!.

With rather different length scales of the primary and sec-
ondary convective states, the equations of motion foruW 1 and
uW 2 can be separated and formulated in the following form:

M] tuW 15LuW 11NW ~uW 1 ,uW 1!, ~3.4!

M] tuW 25L2uW 21NW ~uW 2 ,uW 2!. ~3.5!

The linear operator in the latter equation,L2 , depends on
the primary state. As indicated above, the linear part of Eq.
~3.5! provides in this limit a well-defined threshold for the
onset of the secondary flowuW 2 . @Without that separation of
the length scales the bifurcation into the secondary state
would be imperfect and the separation into the two equations
of motion ~3.4!, ~3.5! is not reasonable.#

The long wavelength modulation (kd!1) has in addition
to the ‘‘sharp’’ threshold the conceptual advantage that
kd!1 can be taken as a small ‘‘expansion’’ parameter. Es-
pecially for undulated boundaries, this small parameter al-
lows within a perturbation expansion the transformation into
coordinate systems with flat boundaries, where the equations
of motion are still of reasonable extent~see Sec. III B 1!.
Also the primary state can be calculated analytically for the
leading order ofk. Both aspects reduce considerably the
technical effort for calculations with modulated geometries.

In this section first the primary flow is determined essen-
tially analytically from Eq.~3.4!: In Sec. III A 1 for a single
temperature modulation and in Sec. III B 2 for a wavy top
boundary with simultaneous temperature modulations on
both boundaries. At the second step in Secs. III A 2 and
III B 3 the equations for the stability properties of the pri-
mary state, namely, the explicit form of the linear part of Eq.
~3.5! and its solutions are formulated. The numerical analysis
of these linear equations is given in Sec. IV.

A. Temperature modulation at the bottom plate

First we describe the effects for the onset of convection as
they are induced by only one spatially periodic temperature
modulation, for example, at the bottom plate (H05H150).
That is a simple enough configuration to demonstrate explic-
itly the calculational scheme for stress-free boundary condi-
tions ~2.8! and ~2.10!. In the next subsection~III B !, where
we consider the temperature modulation at the top or at the
bottom plate simultaneously with the undulation of the top
plate, we can no longer show all the steps of the analysis
explicitly in the available, limited space.

1. The primary flow

Since we are restricting ourselves to long wavelength
modulationskd!1, we can employ a perturbational ansatz
for the primary state:

T̄~x,z!5T̄0~x,z!1kT̄1~x,z!1O~k2!, ~3.6a!

C̄~x,z!5C̄0~x,z!1kC̄1~x,z!1O~k2!. ~3.6b!

These fields must fit the periodicity of the temperature modu-
lation at the boundary and can be expanded into Fourier
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series. Setting the Fourier ansatz into Eqs.~2.4! and using the
fact that the derivatives]x

n are of the orderO(kn), we end up
with the following hierarchy of equations. At the order
O(k0) we have

]z
4c̄050, ~3.7a!

]z
2T̄050, ~3.7b!

and at orderO(k1),

]z
4C̄1~x,z!5

]xT̄
0

k
, ~3.8a!

]z
2T̄1~x,z!5

1

k
~]zC̄

0]xT̄
02]zT̄

0]xC̄
0!. ~3.8b!

Equation~3.7b! can be solved by a polynomial ansatz:

T̄0~z!5c11c2z. ~3.9!

From the boundary conditions,T̄0(x,z50)5Tl1H2(x)
and T̄0(x,z51)5Tu , we can determine the coefficientsc1
and c2 and obtain the final expression for the temperature
field,

T̄0~z!5Tl1H2~x!2z„R1H2~x!…, ~3.10!

with R5Tl2Tu . According to homogeneous boundary con-
ditions for the velocity potentialC̄0 is independent ofx.
Hence, also Eq.~3.7a! can be solved with the polynomial
ansatz

C̄0~x,z!5c11c2z1c3z
21c4z

3. ~3.11!

For the assumed stress-free boundary conditions all the co-
efficients ci50 vanish and therefore the velocity potential
does as well:C̄0(x,z)50.

Using again a polynomial ansatz with respect toz, it is
easy to show that the temperature field vanishes at first order
in k: T̄1(x,z)50. With its explicit form ofT̄0(z) as given in
Eq. ~3.10!, Eq. ~3.8a! takes the form

]z
4C̄15~z21!]xH2~x!/k, ~3.12!

which is solved by

C̄1~x,z!5P~z!]xH2~x!/k, ~3.13!

wherein the polynomialP(z) is defined as

P~z!5
1

360
~28z120z3215z413z5!. ~3.14!

In leading order of thek expansion the primary flow is

C̄~x,z!52P~z!]xH2~x!1O~k3!, ~3.15a!

T̄~x,z!5Tl1H2~x!2z„R1H2~x!…1O~k2!.
~3.15b!

In the next paragraph we will show that this primary state
leads to a modified onset of the Rayleigh-Be´nard convection
rolls. ~The form of the primary flow is depicted in Fig. 4.!

2. Linear stability of the primary flow

Equations~3.5!, linear inQ andF, take with the primary
flow given in Eqs.~3.15! the form

05]xQ2D2F, ~3.16a!

] tQ5DQ2]zC̄]xQ1~]zT̄]x2]xT̄]z!F. ~3.16b!

A parameter set can be calculated at which the primary flow
becomes unstable against the small inhomogeneous perturba-
tionsF andQ. By eliminating the temperature fieldQ, the
analysis of the above equations can be simplified further. For
that we differentiate Eq.~3.16b! with respect tox and elimi-
nateQ from Eq. ~3.16a!. The resulting linear equation in
F may be solved with the separation ansatz

F~x,z,t !5F1~x!F2~z!est. ~3.17!

For the homogeneous stress-free boundary conditions
F2(z)5sin(pz) is an exact solution. To approximate the ex-
act z dependence in the presence of the spatially modulated

FIG. 4. The primary flow for the spatially modulated temperature at the bottom plate is shown@as given analytically in Eq.~3.15!#. The
temperature fieldT̄ is shown in the top part and the potentialC̄ in the middle. The Rayleigh number was taken at the threshold of the
secondary flow, with the modulation amplitudeF250.1Rc

f and wave numberk250.3. The lower part shows thex dependence of the
potentialC̄ at z51/2. ~The dark areas correspond to larger values for the fieldsC̄ and T̄ and the bright areas to smaller values for both
fields.!
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temperature one has to use the seriesF2(z)
5(m51

N sin(mpz) up to some appropriate numberN. Here,
we keep only the first member of this series, sin(pz)
(N51). This simplifies the analysis in the following consid-
erably; however, it keeps the essential effects. To remove the
explicit z dependence in Eqs.~3.16!, we multiply the equa-
tions from the left by sin(pz) and integrate with respect to
z. Then the equation linear inF1 is obtained up toO(k):

s~]x
22p2!2F15~]x

22p2!3F1

2
1

16p4 ~]x
22p2!2]xH2~x!]xF1

2
3

2
]xH2~x!]xF12@R1H2~x!#]x

2F1 .

~3.18!

This linear ordinary differential equation is solved by a Flo-
quet ansatz

F1~x!5eiqx (
l52N

N

gle
ilkx. ~3.19!

Without thermal modulation (H250) all coefficients besides
g0 vanish. Sorting all the terms proportional toeilkx we end
up with the eigenvalue problem,

sgW 5AgW @gW 5~g2N , . . . ,gN!#, ~3.20!

where the matrixA is a band matrix of width (2n211):

Al ,l52~a21p2!1R
a2

~a21p2!2
, ~3.21a!

Al ,l2n2
5
1

2
F2

1

~a21p2!2
bS b1k

1

16p4 ~b21p2!21
3

2
kD ,

~3.21b!

Al ,l1n2
5
1

2
F2

1

~a21p2!2
gS g2k

1

16p4 ~g21p2!22
3

2
kD .

~3.21c!

F2 is the amplitude of the temperature modulation and the
constants are defined as follows:

a5q1kl, ~3.22a!

b5q1k~ l2n2!, ~3.22b!

g5q1k~ l1n2!. ~3.22c!

From the solvability condition for the homogeneous system
of equations~3.20!,

det~sI2A!5 f ~s,q2,R,F2 ,k
2, . . . !, ~3.23!

the eigenvaluess i are determined as a function of the pa-
rameters (I is the unity matrix!. We sort the spectrums i in
ascending order with respect to the real parts and calculate
the eigenvalue with the largest real part:

s5max@Re~s i !#. ~3.24!

The linear perturbationsQ andF with respect to the primary
flow grow for the chosen parameter combinations ifs.0
and they decay ifs,0. We are interested in the neutrally
stable cases50, separating the stable from the unstable
regime. Keeping all parameters besideq fixed, the condition
s50 gives via Eq.~3.23! an implicit condition for the de-
termination of the Rayleigh numberR0(q

2, . . . ) at the in-
stability point.R0(q) is the so-calledneutral curve. For of a
Hopf bifurcationone has a degenerated complex conjugate
pair,

s5l6 iv, ~3.25!

with the Hopf frequencyv as the imaginary part. The onset
of convection happens above the minimum of the neutral
curveR0(q), Rc5min@R0(q)#5R0(q5qc). In case of a Hopf
bifurcation we call the frequency at that point the critical
frequency:vc5v0(q5qc). ForH250 we recover the well-
known threshold for stress-free boundary conditions and un-
modulated temperature,

R0~q!5p4
~p21q2!3

q2
, ~3.26!

with the critical valuesR0(q5qc)5Rc527p4/45657.6,
qc5p/A252.221, andvc50.

B. Wavy boundary plus temperature modulation

Here we proceed to the more general boundary modula-
tions. The primary flow as well as its stability properties are
calculated in the presence of a wavy top boundary plate and
simultaneous modulations of the temperature field at the top
and the bottom plates as introduced in Sec. II B. The scheme
explained in the next subsections is described for rather gen-
eral combinations of temperature modulationsH1 ,H2 and
boundary undulationH0 . Nevertheless we will concentrate
in Sec. IV mainly on the following cases:~i! Geometric un-
dulation of the top boundaryn051, H1(x)50, H2(x)50;
~ii ! two temperature modulations with wave number ratios
k1 :k251:1 and 2:3; ~a! n151, n251, H0(x)50, ~b!
n152, n253, H0(x)50; ~iii ! upper wavy boundary and
temperature modulation at the bottom boundary with wave
number ratiosk0 :k251:1 and 2:3; ~a! n051, n251,
H1(x)50, ~b! n052, n253, H1(x)50.

1. Transformation into flat boundaries

To calculate the primary flow as well as its stability prop-
erties in the presence of a boundary undulation it is conve-
nient to transform into a coordinate system where the bound-
aries become flat again. The transformation to the new
coordinatesj andh is as follows~see@39#!:

j5x, h5
z

11H0~x!
. ~3.27!

Within this definition the bottom and top boundaries are lo-
cated ath50,1. After the transformation of the equations of
motion ~2.4! into the new coordinates we keep terms up to
the leading order in the modulation wave numberk. Other-
wise the differential operators become rather cumbersome.
The details of the operator transformation are given in the
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Appendix and the equations of motion in the transformed
system are, up the leading order ink,

~]j1hB]h!T5~]j
41A4]h

414hB]j
3]h12A2]j

2]h
2

18A2B]j]h
214A2Bh]j]h

3 !C,

~3.28a!

] tT52A]hC~]j1hB]h!T1~]j1hB]h!CA]hT

1~]j
21A2]h

212hB]j]h!T, ~3.28b!

with

A~j!5
1

11H0~j!
5

1

11F0cos~k0j!
, ~3.29a!

B~j!5
2]jH0~j!

11H0~j!
5

k0F0sin~k0j!

11F0cos~k0j!
. ~3.29b!

The conditions for stress-free boundaries described in Sec.
II B are in the transformed coordinate system:

T~j,h50!5Tl1H2~j!, ~3.30a!

T~j,h51!5Tu1H1~j!, ~3.30b!

C~j,h50,1!50, ~3.30c!

]h
2C~j,h50,1!50. ~3.30d!

For rigid boundary conditions the latter condition~3.30d! is
changed into

]hC~j,h50,1!50. ~3.31!

2. The primary flow

We use again the expansion given in Eqs.~3.6! for the
calculation of the primary flow from Eqs.~3.28!. The equa-
tions for the fields in leading order,C̄0,T̄0}O(k0), are

A4]h
4C̄0~j,h!50, ~3.32!

A2]h
2 T̄0~j,h!50. ~3.33!

C̄0(j,h)50 vanishes again and with the polynomial
ansatz T̄0(j,h)5c11c2h we find from Eq.~3.33!,

T̄0~j,h!5Tl1H2~j!1h„H1~j!2H2~j!2R….
~3.34!

The equations for the fields in next higher orderO(k1) read

A4]h
4C̄1~j,h!5

1

k
~]j1hB]h!T̄0, ~3.35!

A2]h
2 T̄1~j,h!50. ~3.36!

From Eq.~3.36! one finds againT̄150 and with the explicit
form of T̄0 Eq. ~3.35! takes the form

kA4]h
4C̄15M1~j!1hM2~j!, ~3.37!

with

M15]jH2~j!, ~3.38!

M25]j„H1~j!2H2~j!…1B~j!„H1~j!2H2~j!2R….
~3.39!

Using a polynomial ansatz for this ordinary differential equa-
tion the primary flow up toO(k) is given by

C̄~j,h!5
k

A4 @P1~h!M1~j!1P2~h!M2~j!#, ~3.40!

T̄~j,h!5Tl1H2~j!1h„H1~j!2H2~j!2R…,
~3.41!

with

P1~h!5
1

360
~15h230h3115h4!, ~3.42a!

P2~h!5
1

360
~7h210h313h5! ~3.42b!

for stress-free boundaries and

P1~h!5
1

120
~5h2210h315h4!, ~3.43a!

P2~h!5
1

120
~2h223h31h5! ~3.43b!

for rigid boundary conditions.

3. Linear stability of the primary flow

The separation ansatz given in Eqs.~3.1! together with the
transformed equations of motion~3.28! lead to two coupled
linear equations for the fieldsF andQ with periodic coeffi-
cients:

S 1A4 ]j1h
B

A4 ]hDQ5S 1A4 ]j
41]h

414h
B

A4 ]j
3]h12

1

A2 ]j
2]h

2

18
B

A2 ]j]h
214

B

A2h]j]h
3 DF, ~3.44!

1

A2 ] tQ52
1

A
]hC̄]jQ2

1

A
]hF]jT̄1

1

A
]hT̄]jF

1S 1A2 ]j
21]h

212
B

A2h]j]hDQ. ~3.45!

The periodic coefficients have the periodicity of the bound-
ary modulations and thej andh dependence can be sepa-
rated with the following Floquet-type ansatz:

F~j,h,t !5est1 iqj (
l52N,m51

N,MP

eilk j f m~h!1c.c.,

~3.46!
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Q~j,h,t !5est1 iqj (
l52N,m51

N,MP

Tl ,me
ilk jsin~mph!1c.c.,

~3.47!

~c.c. denotes the complex conjugate!. For free boundary con-
ditions f m(h) is of the form

f m~h!5sin~mph!, ~3.48!

and for rigid onesf m(h) can be expressed for even and odd
values ofm in terms of Chandrasekhar functionsCm and
Sm @3#

f m~h!5Cm~h! ~ for m even!, ~3.49a!

f m~h!5Sm~h! ~ for m odd!, ~3.49b!

which are defined by the following expressions:

Cm~h!5

coshFlmS h2
1

2D G
coshS 12 lmD 2

cosFlmS h2
1

2D G
cosS 12 lmD ,

~3.50!

Sm~h!5

sinhFmmS h2
1

2D G
sinhF12mmG 2

sinFmmS h2
1

2D G
sinS 12mmD .

~3.51!

Hereinlm andmm are solutions of the following two equa-
tions:

tanh~ 1
2lm!1tan~ 1

2lm!50, ~3.52!

coth~ 1
2mm!1cot~ 1

2mm!50 . ~3.53!

To transfer the linear equations into an eigenvalue problem
for the constant coefficientsTl ,m andPl ,m one has to elimi-
nate the remaining dependence onj andh by projecting Eq.
~3.45! onto

E
2`

`

djE
0

1

dhe2 ikl f n~h!( ~3.54!

and Eq.~3.44! onto

E
2`

`

djE
0

1

dhe2 iklsin~nph!(. ~3.55!

This leads to two coupled linear equations:

iA1QW 5A2FW , ~3.56!

sB1QW 5B2QW 1 iB3FW , ~3.57!

where the vectorsQW andFW are defined by

FW 5S FW 1

A

FW MP

D and QW 5S QW 1

A

QW MT

D ~3.58!

and the subvectors by

FW m5S Pm,N

A

Pm,2N

D and QW m5S Tm,N

A

Tm,2N

D . ~3.59!

The matricesA1 andA2 are of a block structure:

Ai5S Ai
11 . . . Ai

Mp1

A A

Ai
1MT . . . Ai

MPMTD . ~3.60!

The matricesB1 , B2 , andB3 are of a similar form; how-
ever, the dimensionsMT andMP are exchanged.

The submatrices are of the dimension (2N11)
3(2N11), with a bandwidth up ton0max(n1 ,n2). They
can be written in terms of the vector

EW ~j!5~e2 iNkj, . . . ,eiNkj!, ~3.61!

with the help of the dyadic product( and the abbreviation

^U&5E
2`

`

djE
0

1

dhU~j,h! ~3.62!

in the following form:

A1
mn5^EW * ~j!( f m~h!a1sin~nph!EW ~j!&, ~3.63a!

A2
mn5^EW * ~j!( f m~h!a2f n~h!EW ~j!&, ~3.63b!

B1
mn5^EW * ~j!(sin~mph!b1sin~nph!EW ~j!&,

~3.63c!

B2
mn5^EW * ~j!(sin~mph!b2sin~nph!EW ~j!&,

~3.63d!

B3
mn5^EW * ~j!(sin~mph!b3f n~h!EW ~j!&. ~3.63e!

Herein the operatorsai andbi are defined by

a15
1

A4 ]j1h
B

A4 ]h , ~3.64a!

a25
1

A4 ]j
41]h

414h
B

A4 ]j
3]h12

1

A2 ]j
2]h

218
B

A2 ]j]h
2

14
B

A2h]j]h
3 , ~3.64b!

b15
1

A2 , ~3.64c!
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b252
1

A5 ~]hP1M11]hP2M2!]j1
1

A2 ]j
21]h

2

12
B

A2h]j]h , ~3.64d!

b352
1

A
@h]j~H12H2!1]jH2#]h1

1

A
~2R1H12H2!]j .

~3.64e!

The calculation of the submatricesAi
mn is rather complex.

Therefore we developed for the derivation of those an algo-
rithm with the algebraic manipulation packageMAPLE pro-
viding the Fortran source codes. This is especially helpful
when we use different combinations of the external modula-
tions.

F can be eliminated from Eq.~3.57! via

FW 5 iA2
21
A1QW ~3.65!

and one obtains the following eigenvalue equation:

sB1QW 5B2QW 2B3A2
21
A1QW . ~3.66!

This can be formally simplified into

sQW 5CQW , ~3.67!

with

C5B1
21~B22B3A2

21
A1!. ~3.68!

From the eigenvalue with the largest real part,l
5max@Re(s i)], the neutral curveR0(q) and the Hopf fre-
quencyv0(q) can be determined via the conditionl50.
Minimizing R0(q) then gives again the critical Rayleigh
numberRc , the critical wave numberqc , and in case of a
Hopf bifurcation also the critical Hopf frequencyvc .

The dependence of these critical quantities on the param-
eters is described in Sec. IV, whereby for all calculations the
first three Chandrasekhar functions have been used. Using in
the expansions~3.46! and ~3.47! a larger number of these
functions changes the results only slightly~quantitatively,
not qualitatively!. The convergence of the expansion has al-
ways been tested numerically. In addition the first six modes
in the Floquet expansion~3.46! have been used, which are
also a reasonable approximation.

C. Amplitude equations: Linear parts

In contrast to unmodulated Rayleigh-Be´nard convection
the eigenvalue spectrum of Eq.~3.67! contains under certain
conditions also conjugate complex pairs with imaginary parts
6v ~see Sec. IV C below!. Those pairs become critical
@Re(s)50, Im(s)56v# at certain values for the ampli-
tudes of the boundary undulation and the simultaneous tem-
perature modulation and all other eigenvalues are still
damped Re(s),0. In such a case immediately above
threshold the secondary flow is expected to be a traveling or
a standing wave of the following form:

F~j,h,t !5A0e
i ~qcj1vct !F1~j,h!1B0e

i ~qcj2vct !F2~j,h!

1c.c. ~3.69!

F1/2 correspond to the respective Hopf frequency6vc and
is defined by the series@see also Eqs.~3.46! and 3.47!#:

F1/2~j,h!5 (
l52N

N

(
m51

MP

Pl ,m
1/2eilk j f m~h!. ~3.70!

Both functions have the periodicity 2p/k and describe in
Eq. ~3.69! a slow modulation of the fast varying traveling
and standing wave part,ei (6qcx6wct). For the temperature
field Q(j,h,t) a similar expression can be obtained; how-
ever, the amplitudesPl ,m must be replaced byTl ,m .

For B050 the expression in Eq.~3.69! describes a left
traveling wave and forA050 a right traveling wave.@For
vc50 andA050 or B050 formula ~3.69! describes a sta-
tionary quasiperiodic cellular structure.# Assuming noncon-
stant amplitudesA0 andB0 , which are slowly varying on the
spatial scales 2p/qc and 2p/k as well as on the temporal
scale 2p/vc , then one can derive for them envelope equa-
tions @57, 58# in a small« neighborhood of the critical Ray-
leigh numberRc , with

«5~R2Rc!/Rc . ~3.71!

The linear parts of such equations are well known and have
the following form @59–61#:

t0~] t2vg]x!A05~«1d«!~11 ic0!A01j0
2~11 ic1!]x

2A0

1~nonlinear terms!, ~3.72a!

t0~] t1vg]x!B05«~11 ic0!B01j0
2~11 ic1!]x

2B0

1~nonlinear terms!. ~3.72b!

d« describes the case when the thresholds for the right and
left traveling waves do not agree. All the other linear coef-
ficients of these two equations describe physical quantities,
such as the relaxation timet0 , the group velocityvg , the
linear frequency shift«c0 , the coherence lengthj0 and the
linear frequency dispersionj0

2c1 . All of them can be calcu-
lated from the dispersion relations(R,q2,k, . . . )5l6 iv
for the critical eigenvalues by the following expressions:

vg5
]v

]q
, t05

1

Rc]Re~s!/]R
, c05Rct0

]v

]R
,

j0
25

1

2Rc

]2R

]q2
, c152

t0
2j0

2

]2v

]q2
. ~3.73!

Those derivatives are evaluated at the critical values
Rc ,qc ,vc . Typical numerical results for these physical
quantities are given in Sec. IV D for representative parameter
sets.

IV. NUMERICAL RESULTS

The numerical analysis of equations formulated in Secs. II
and III, namely, the determination of the basic state and its
instability with respect to a short wavelength secondary state,
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are described in the present section for a representative num-
ber of geometries and parameter combinations. Since there
are no qualitative differences between the results for free and
realistic rigid boundary conditions~see Sec. II B! we use
stress-free boundary conditions for thermal convection in
Sec. IV A for reasons of simplicity and for the rest of this
section we use rigid ones. The amplitudes of the temperature
modulations,F1 andF2 , are always measured in units of the
critical Rayleigh numberRc

f for stress-free boundary condi-
tions orRc

r for realistic boundary conditions, respectively:

Rc
f5657.511, Rc

r51707.762. ~4.1!

A. Thermal modulation of the bottom plate

The analytical expression for the basic flow in the pres-
ence of the long wavelength temperature modulation at the

bottom boundary,H2(x), is given in Eq.~3.15! and its spa-
tial structure in thex-z plane is plotted in Fig. 4.

Having in mind the relations~2.2! between the velocities
v i and the PotentialC̄ it is easy to see from the lower part of
Fig. 4 that the flow is upwards in the range with larger tem-
perature differences. The amplitudes of the velocity field of
the basic flow increases linearly with the amplitude of the
temperature modulation and the wave number of the modu-
lation.

The presence of the temperature modulation induces some
degeneracy in the neutral curveR0(q). Instead of a single
minimum in the neutral curve atqc for the unmodulated
case, one has to deal for the modulated case with several
local minima that are separated byk. The location of those
local minima on the neutral curveR0(q) are plotted in Fig.
5~b! for increasing values of the temperature modulation.
The solid line in Fig. 5~b! indicates the absolute minimum of
the neutral curve. It ends for decreasing modulation ampli-
tudes at the local minimumqc of the unmodulated case. The
other local minima vanish for increasing values ofF2 . The
absolute thresholdRc(F2) decreases with increasing modu-
lation strength as shown in Fig. 5~a!. Also the critical wave
numberqc decreases slightly@solid line in Fig. 5~b!#. This
tendency has been also reported in the literature on similar
problems@37, 39#.

As a consequence of the spatial modulation of the primary
flow, the envelope of the linear secondary flow at threshold
is also modulated with the wave number of the temperature
variation at the boundary. The modulated secondary flow is
shown in Fig. 6 for two different values of the amplitude of
the temperature modulationF2 . The eigenfunctions of Eq.
~3.20! corresponding to the eigenvalue Re@s#50 are shown,
which are transformed via Eq.~3.19! into real space. In Fig.
6~a! the eigenfunction is given for the modulation amplitude
F2 /Rc

f50.01, at the critical Rayleigh numberRc5656.25
and the critical wave numberqc52.22, and in~b! the eigen-
function is plotted for a considerably larger modulation am-
plitudeF2 /Rc

f50.1. The critical values in the latter case are
already strongly reduced toRc5613.65 andqc52.1757, and
the eigenfunction is more localized. This strong localization
of the secondary state may be sensitive to thermal fluctua-
tions near onset.

Keeping the modulation amplitudeF2 fixed and increas-
ing the modulation wave numberk leads to increasing values
for both the critical Rayleigh numberRc and the critical
wave numberqc , as well as to a weaker localization of the

FIG. 5. The threshold for the onset of secondary flow and its
critical wave number are given as a function of the normalized
modulation amplitudeF2 /Rc

f . The modulation wave number is
k50.2.

FIG. 6. The linear eigenmodes of the second-
ary flow are shown for the same parameters as in
Fig. 4. In ~a! for F250.01Rc

f and in ~b! for
F250.1Rc

f . At the bottom of~a! and~b! now the
profile for the potential of the secondary flowF
along z5

1
2 is given ~stress-free boundary condi-

tions!.
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linear secondary flow. This tendency persists up to commen-
surate ratios forqc /k.

B. Wavy top boundary

Replacing the temperature modulation by periodic undu-
lation of one of the boundaries, the primary flow, the spatial
structure of the secondary flow as well as its critical value
Rc are changed in a similar manner, as described in the pre-
vious section. The velocity field of the primary state has also
a finite amplitude and it agrees with that of the boundary
modulation. The critical Rayleigh numberRc at the onset of
the secondary flow and the critical wave numberqc decrease
again with increasing values for the undulation amplitude
F0 , however, much more strongly. Increasing values for the
undulation wave numberk0 lead also to increasing values for
Rc and qc . Even the localization behavior is qualitatively
similar, but it is more strongly pronounced for a geometric
modulation.

C. Two wavelength modulation

From the whole variety of imaginable combinations of
temperature modulations at the top and bottom plates and a
simultaneous periodic undulation of the top plate, we con-
sider only a few representative configurations as described
already in Sec. III B. We analyze in this section especially
those modulations in more detail that show a transition into
secondary drifting patterns~Sec. IV C 1! as well as a Hopf
bifurcation by frustrated drifts~Sec. IV C 2!.

1. Bifurcations into drifting patterns

Simultaneous modulations of the temperatures at both
boundaries or an undulated top boundary combined with a
temperature modulation at the bottom plate may lead to the
drifting secondary flow at onset, where the drift velocity is a
function of the relative phase between two modulations.

a. Two temperature modulations: k15k2 . For Rayleigh-
Bénard convection with Boussinesq fluids~the only ones
considered here! and modulated temperatures at the top and
bottom plates with equal wave numbers,k15k2 , we find
only stationary bifurcations from the primary into the sec-
ondary flow for arbitrary values between the relative phase,
w12w2 , which is in agreement with a previous analysis
@30#.

b. Two temperature modulations: k1 /k252/3. Taking
commensurate ratios between the modulation wave numbers,
for instance,k1 /k252/3, then the eigenvalue spectrum of
Eq. ~3.67! is changed. It becomes complex for a large range
of the phase differences,w12w2 , without having degenerate
complex conjugate pairs. When the eigenvalue with the larg-
est real part becomes critical, namely, when max@Re(s)#
50 and Im(s)50 are met, the corresponding critical mode
is a drifting ~traveling! wave with the drift velocity

vD5
vc

qc
. ~4.2!

By turning the relative phase,w1→2w1 , the signs ofvc and
vD are also reversed, which is different for a Hopf bifurca-

tion, discussed below, where one has two degenerated com-
plex conjugated eigenvalues and thus two degenerated drift
directions.

In Fig. 7~a! the drift velocityvD is shown as a function of
the relative phasew1 (w250) for the wave number ratio
k1 /k252/3 and at fixed amplitudesF15F250.02Rc

r ,
whereas in Fig. 7~b! the drift velocity is shown as a function
of the modulation amplitudes and at a fixed phase difference
w158°. In Fig. 7~a! the drift velocityvD passes zero with a
smaller slope at the relative phasesw15 60°, 180°,. . . , and
changes rapidly, however, smoothly, from its maximal posi-
tive value to its negative one near the phasesw1
50°, 120°, 240°, . . . . Near the latter phase differences the
neutral curve develops as a function of the phase difference
of two neighboring minima. Both correspond to two slightly
different eigenvalues in the spectrum whereas the imaginary
parts of the eigenvalues and therefore the driftsvD
vanish continuously by approachingw25n3120°
(n50,1,2,. . . ).

Varying the phasew2 at the bottom boundary instead of
the phasew1 at the top boundary, the zeros of the drift ve-
locities vD are shifted from 60°,120°,. . . , to
90°,180°,. . . , and therapid changes ofvD are shifted from
0°,120°,240°,. . . , to 180°,360°,. . . , respectively.

Drifting solutions induced by temperature modulations at
both boundaries have been found earlier only for non-
Boussinesq fluids, whereas for the discussed example differ-
ent modulation wave numbers are enough. The situation is
similar for wave number ratiosk1 /k251/2 or 2; however, as

FIG. 7. The drift velocityvD5vc /qc of the secondary flow at
threshold is shown in~a! as a function of the relative phasew1 ~deg!
~and w250) between the temperature modulation at the top and
bottom plates. Modulation amplitudes and wave numbers have been
fixed atF15F250.02Rc

r and atk152k, k253k with k50.2. In~b!
the drift velocityvD is shown as a function of the modulation am-
plitudesF15F2 for the phasesw158° andw250.
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in the case discussed above the velocities in physical units
are rather small.

c. Wavy top boundary and temperature
modulation at bottom boundary: k05k2 . A wavy top
boundary and a periodic temperature modulation at the bot-
tom boundary is in various aspects equivalent to the situation
of two wavy boundaries, as shown in Fig. 1. However, it is
analytically and numerically much simpler.

In contrast to the temperature modulations considered in
the last paragraph we observe already drifting patterns for a
combination of a wavy top boundary with a temperature
modulation at the bottom plate at equal wave numbers
k05k2 and finite values for the relative phasew2 . This is
shown in Fig. 8 for rigid boundary conditions, where the
drift velocity of the critical eigenfunction is plotted as a
function of the relative phasew2 . In these calculations the
modulation amplitudes and the wave numbers have been
kept fixed atF050.02,F25 0.02Rc

r , andk05k25 0.2. It is
remarkable that the drift velocities are now three orders of
magnitude larger as for two temperature modulations. The
drift velocity has zeros at multiples of 180° and it is anti-
symmetric with respect to these zeros:vD(180°1w2)
52vD(180°2w2). The extrema ofvD are atw2.109° and
atw2.251°, etc. for the chosen parameters. For free bound-
ary conditions the qualitative behavior is the same, however,
the absolute values forvD are larger by a factor of about 3.

The drift velocity vD of the critical eigenstate increases
with the two modulation amplitudesF0 andF2 as shown in
Fig. 9 at fixed values ofk05k250.2 and the relative phase
w25109°. In Fig. 10 we show additionally the dependence
of the drift velocity on the modulation wave numbers
k05k15k and for fixed modulation amplitudesF050.02,
F250.02Rc

r at a fixed relative phasew25109°. The nearly
linear growth of uvDu with k is mainly related to the long
wavelength approximationlM@d. At large values for the
wave numberk, uvDu is expected to be small again.

2. Hopf bifurcation by frustrated drifts

A wavy top boundary and temperature modulation at the
bottom boundary with wave number ratiok0 /k253/2, as

considered in this section, lead to a qualitatively new bifur-
cation scenario. As explained in the following and compared
to the situations discussed above in Sec. IV C 1, the major
difference is that complex conjugate pairs of eigenvalues
may occur in the eigenvalue spectrum. Two of them also
may become critical, in which case one has a Hopf bifurca-
tion.

It was shown in the previous section that modulations of
equal wave numbers for the undulated top boundary and the
modulated bottom temperature,k05k2 , lead to a secondary
state drifting either to the right (0,w2,180°) or to the left

FIG. 8. The drift velocityvD5vc /qc of the secondary flow at
threshold is shown as a function of the relative phasew2 ~deg!
between the temperature modulation at the bottom plate and a wavy
top boundary. Modulation amplitudes have been fixed at
F050.02, F250.02Rc

r and the modulation wave numbers are
k05k25k50.2.

FIG. 9. The drift velocity is shown as a function of the modu-
lations. In ~a! as a function of the temperature modulation at the
bottom plateF2 at a fixed wave numbersk05k250.2, phase
w25109°, and a geometric modulation amplitudeF050.02. In~b!
as a function of the geometric modulation amplitudeF0

(F250.02Rc
r ) ~rigid boundary conditions!.

FIG. 10. The drift velocityvD as function of the modulation
wave numberk05k2 is shown, with the other parameters fixed at
F050.02, F250.02Rc

r , w25109°.
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(180°,w2,360°), such as indicated in Fig. 8. In these
cases the secondary state is drifting for rather arbitrary val-
ues for the amplitudesF0 , F2 and modulation wave number
k. Only at phasesw250°,180°,. . . , thebifurcation from
the primary state is stationary and the imaginary partv i as
well as the drift velocity changes its sign by passing these
values.

Changing the phasew2 for the wave number ratio
k2 /k053/2, the secondary state occurs via a right drifting
pattern for phases, 0,w2,90°, and via a left drifting pat-
tern for 90°,w2,180°. This is indicated in Fig. 11~a!
where the imaginary partsv1,25 Im(s1,2) of the two eigen-
values with the largest real parts are plotted. In Fig. 11~b! the
second largest real part,l25 Re@s2#, is given, while the
largest real part is kept critical, max Re@s#50, by adjusting
R to Rc .

The moduli of the imaginary parts of both eigenvalues
(v i) increase with w2 and become equal atw2
590°,270°,. . . . At these phases the real part of the second
largest eigenvalue vanishes too (Re@s1#505 Re@s2#) and
the bifurcation from the primary flow into the secondary flow
is oscillatory with two degenerated complex-conjugated ei-
genvalues. One has a Hopf bifurcation at this crossing point.
This Hopf bifurcation is a rather novel phenomenon, which
has been predicted recently for a model@52#. We call this
phenomenonHopf bifurcation induced by frustrated drifts,

because at these values both drift directions have the same
threshold and thus there is no uniquely preferred drift direc-
tion anymore. Immediately above threshold the nonlinear in-
teraction between both drift directions favors a superposition
of both linear drifting modes and one has standing waves
@62#.

The sign of the drift velocityvD changes abruptly at
90°,270°, . . . by the interchange of the two critical complex
eigenvalues. The transition into the secondary flow becomes
stationary (vD50) at w250°,180°, . . . andv, as well as
the drift velocity vD , changes its sign smoothly at these
values, as indicated in Fig. 11~a!.

The degeneracy of two critical complex conjugate eigen-
values atw590°,270°, . . . ~Hopf bifurcation by frustrated
drifts! does not occur at arbitrary combinations ofF0 , F2 ,
andk. Moreover, as indicated in Figs. 12 and 13 these pa-
rameters have to be beyond certain thresholds. In Fig. 12 the
phasew2590° and the wave numbers are fixed:k052k,
k253k, k50.2. The amplitudesF0 ,F2 are varied, whereby
the Rayleigh number has been always adjusted appropriately
to reach the critical point max Re@s i #50. The shaded region
indicates the amplitude combinationsF0 , F2 , where the
transition from the primary into the secondary flow happens
via a Hopf bifurcation by frustrated drifts. Otherwise the
transition is stationary. In Fig. 13F050.02 is kept fixed and
F2 as well as the modulation wave numberk are scanned.
Again rigid boundary conditions and the wave number ratio
k0 /k252/3 have been used. At very small and at larger val-
ues ofk the Hopf bifurcation disappears. In that sense there
is also a threshold for the modulation wave number.

The phase boundaries in Figs. 12 and 13 are not smooth
everywhere, because the neutral curve has several local
minima separated byk, as indicated for a special case in Fig.
5. When parameters are changed, the absolute one of these
local minima is not always the same—on the stationary as
well as on the Hopf branch. At parameters where the abso-
lute minimum of the neutral curve changes its position ink

FIG. 11. In ~a! the imaginary parts Im(s1,2) of the two eigen-
values with the largest real parts are plotted as a function of the
relative phasew2 ~deg!. In ~b! the real part Re(s2) of the eigen-
value with the second largest real part is given. We can see that at
w25690° the real parts of both eigenvalues vanish and the imagi-
nary part has the same modulus. For these phase shifts the onset of
the secondary flow takes place via a Hopf bifurcation. The follow-
ing parameters have been used: modulation amplitudesF050.02,
F250.02Rc

r and the modulation wave numbersk052k and
k253k with k50.2.

FIG. 12. In the plane of the modulation amplitudesF0 andF2

the ranges are indicated where the transition from the primary flow
to the secondary flow takes place via a stationary or a Hopf bifur-
cation ~shaded region!. This figure indicates that finite modulation
amplitudes are needed to induce a Hopf bifurcation. The ratio
k0 /k252/3 between modulation wave numbers for the wavy top
boundary and the temperature modulation at the bottom boundary
have been used with a relative phasew2590°. Parameters: rigid
boundary conditions,k50.2, k052k, andk253k.

53 6005SPATIALLY PERIODIC MODULATED RAYLEIGH-BÉNARD . . .



space~from one local minimum to another one!, then a dis-
continuity for the tangent of the phase boundaries might oc-
cur, as can be seen for a few positions at the phase boundary
in Figs. 12 and 13.

For a fixed amplitudeF050.02 we show in Fig. 14 the
eigenfunctions of the secondary flow at three different values
of F2 (w2590° andk50.2). In Fig. 14~a! the velocity po-
tential of the secondary flow at onset,F, is shown for a
stationary bifurcation at parameters just outside the shaded
region in Fig. 12. In Fig. 14~b! F is shown for a localized
traveling wave state at onset of the secondary flow for a
parameter set just above the separation line and in Fig. 14~c!
far inside the shaded region of Fig. 12. All three states are
plotted for the lengthL52p/k. In the case of traveling wave
states the envelope is fixed and the phase is traveling.

There is a significant difference between the eigenstate on
the stationary and the Hopf branch. The eigenfunction at the
stationary branch has two periods on the lengthL, as shown
in Fig. 14 and the oscillatory state has only one spatial period
on the same lengthL. The stationary bifurcation is therefore
harmonic with respect to the smaller of the external modula-
tions, k052k, and the oscillatory one is subharmonic with
respect tok0 . The opposite traveling wave state is also lo-
calized in space and subharmonic, however, translated in
space byL/4. The subharmonic behavior is an essential sig-
nature of the Hopf bifurcation by frustrated drifts. This is in
contrast to the drifting solutions discussed in Sec. IV C 1,
where all solutions were harmonic with respect to the small-
est external wave number.

3. Codimension-2 bifurcation

At the phase boundaries in Figs. 12 and 13 there is an
interesting competition between a stationary and an oscilla-
tory instability, a so-called codimension-2 bifurcation@63#,
which we analyze in more detail in this section. For that
purpose the phasew25p/2 between the two modulations
and the ratio,k0 /k252/3, are kept fixed.

It is already indicated in Fig. 5 for a simpler case that the
neutral curves for the stationary~st! and the Hopf branch
(H) may have several local minima—also near the phase
boundaries in Figs. 12 and 13. The location of five such local
minima on the stationary branch are plotted in Fig. 15~b! as
a function of the temperature modulationF2 and for param-
eters near phase boundary in Fig. 12. The respective thresh-
olds are given in Fig. 15~a! wherebyk50.2 andF050.02
have been kept fixed. The solid line in Fig. 15 corresponds to
the Hopf branch. The local minima on the stationary branch
are separated roughly by the wave numberk. With increas-
ing values of F2 the minima of the neutral curve at
qc
st'3.25 and atqc

st'2.92 become narrower and narrower
and then coalesce to a Hopf branch with a higher threshold
than the lowest stationary one.

FIG. 13. At parameters in the shaded range the transition from
the primary to the secondary flow takes place via a Hopf bifurca-
tion. The geometric undulation amplitude was fixed atF050.02,
the wave numbers atk052k, k253k, and the phase atw2590°.
The amplitude of the temperature modulation is given in units of
the critical Rayleigh number of the unmodulated caseRc

r51708
~rigid boundary conditions!.

FIG. 14. The velocity potentialF at the onset
of the secondary state is shown. In~a! the form of
the eigenstateF is shown in the stationary re-
gime, in ~b! just inside the Hopf regime~indi-
cated in Fig. 12!, and in ~c! deep in the Hopf
regime. k50.2,F050.02, and w2590° have
been used. The horizontal length in the figure is
L52p/k. The stationary eigenstate in~a! has
two periods in between this length and the oscil-
latory states, shown in~b! and ~c!, have one pe-
riod on the given lengthL. Therefore the station-
ary state is harmonic with respect to the
modulation wave numberk052k and the oscilla-
tory ones are subharmonic.
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The local minimum on the stationary branch atqc
st'3.09

is the absolute minimum for small values ofF2 . Increasing
the amplitudeF2 then nearF2'0.0022Rc

f the local mini-
mum atqc

st'2.72 becomes the absolute minimum of the neu-
tral curve. At even larger values forF2.F2c'0.00378Rc

f

the Hopf branch~solid line! in Fig. 15 becomes the absolute
minimum, with a lower threshold than the lowest minimum
at qc

st'2.72 of the stationary branch. This latter exchange of
stability takes place at the phase boundaries shown in Figs.
12 and 13. NearF2'0.0022Rc

f two stationary instabilities
with different wavelength are competing~dashed and
dashed-dotted!. The nonlinear interaction between both
modes may give rise to interesting phenomena near the phase
boundaries in Figs. 12 and 13.

Since we are focusing mainly on the occurrence of the
Hopf bifurcation by frustrated drifts, we show in Fig. 16 the
structure of the neutral curve in more detail near the phase
boundary for three different values ofF2 , around the
codimension-2 valueF2c'0.00378Rc

f . The dashed lines are
neutral curves belonging to the stationary branch with the
two local minima located atqst'3.44 andqst'2.71 in Fig.
15~b!. The solid line is the neural curve of the Hopf branch.
In Fig. 16~a! the neutral curves are shown for
F250.0025,F2c below the codimension-2 point~CTP!, in
Fig. 16~b! at the CTP,F25F2c , and in Fig. 16~c! beyond the
CTP atF250.01.F2c . Starting fromF2c and decreasing
F2 then theq range of the Hopf branch becomes narrower
and vanishes in a complex manner near some finite value for
F2'0.0023Rc

r .

Whenever the solid line in Fig. 16 terminates at the neu-
tral curves of the stationary branches~dashed lines! the Hopf
frequencyv0 vanishes and one has a double-zero eigen-
value. This behavior is very similar to the codimension-2
bifurcation occurring in binary fluid convection@59, 64#.
Apart from two nearly critical eigenvalues in the vicinity of
F2c (F0 and k fixed! all other eigenvalues have strongly
negative real parts and are damped. In this situation the
n-order characteristic polynomial, equivalent to Eq.~3.67!,
can be separated into one of the ordern22 and into a further
one of second order:

s22e~R,q!s2d~R,q!50 . ~4.3!

This reduced polynomial describes the dynamics of the two
nearly critical eigenvalues in the vicinity of the
codimension-2 pointF2c . With the arguments following Eq.
~3.23! the conditionse50 andd50 give the neutral curves
R0
osc(q) and R0

stat(q), respectively. A similar approach as
been used to describe the codimension-2 bifurcation in bi-
nary fluid convection. For that situation also a generalized
amplitude equation has been derived@64#, which reproduces
the dispersion relation given in Eq.~4.3! for a special case.
From the nonlinear analysis of that equation interesting dy-
namical behavior has been found near such codimension-2
bifurcations@63, 64#.

The essential features of the neutral curves shown in Fig.
16 can be reproduced by a second order polynomial given in
Eq. ~4.3! with the explicit expressions for the coefficients:

FIG. 15. In~a! the thresholdsRc
st,H and in~b!

the critical wave numbersqc
st,H at the local

minima of the stationary bifurcation branches
~dashed-dotted lines! and the Hopf bifurcation
~solid line! are shown as a function of the ampli-
tude of the thermal modulation at the bottom
plate F2 . The rest of the parameters have been
fixed at the same values as in Fig. 12.

53 6007SPATIALLY PERIODIC MODULATED RAYLEIGH-BÉNARD . . .



e~R,Q!5«2bQ2, ~4.4!

d~R,Q!5«2h2
a2

4
1aQ22gQ4, ~4.5!

with

Q5q2qc
H ,

a'8~qc
st2qc

H!2, h}F22F2c .

Herein b reflects the curvature of the neutral curve at the
Hopf branch andg is a free parameter to fix the form of the
neutral curve for the stationary branch as close as possible.
From s5d50 the neutral curve for the stationary branch
can be determined, which has obviously two minima. The
two minima of the neutral curve of the stationary branch are
the essential difference from the polynomial discussed earlier
in the context of binary fluid convection@59, 64#. The modi-
fied corresponding generalized amplitude equation is dis-
cussed elsewhere.

Along the phase boundaries in Figs. 12 and 13, the critical
quantities at the Hopf branch, the critical Rayleigh number
Rc
H , the critical Hopf frequencyvc , and the critical wave

numberqc
H vary only slightly. This is shown explicitly in

Fig. 17 where those quantities are given along the phase

boundary in Fig. 13. Therefore one expects similar bifurca-
tion behavior wherever one crosses the phase boundaries in
Figs. 12 and 13.

D. Linear coefficients of the amplitudes equations
above the Hopf bifurcation

The coefficients in the amplitude equations defined in
Sec. III C describe the physical quantities such as the Hopf
frequencyvc , relaxation timet0 , coherence lengthj0 , lin-
ear frequency shift«c0 , group velocityvg , and linear fre-
quency dispersionj0

2c1 . These characterize the linear prop-
erties of the patterns near threshold to a great extent. Hence,
we have plotted them in Fig. 18 for a typical parameter set as
a function of the modulation amplitudeF2 ~other parameters
are the same as in Fig. 16!. Below F2c ~dotted lines! the
quantities correspond to the coefficients of the stationary bi-
furcation and beyondF2c to the coefficients of the amplitude
equation near a Hopf bifurcation. The discontinuity of the
coherence lengthj0 @Fig. 18~e!# reflects the exchange of the
absolute minimum of the neutral curve from one local mini-
mum to another, which have different curvatures at the mini-
mum.

V. SUMMARY AND CONCLUSION

Our quantitative analysis gives an estimate where the phe-
nomenon of Hopf bifurcation by frustrated drifts, predicted

FIG. 16. The neutral curves for the stationary bifurcation
R0
st(q) ~dashed line! and for the Hopf bifurcationR0

H(q) ~solid line!
are shown for three different values of the thermal modulation am-
plitudeF2 , whereas the rest of the parameters are kept fixed at the
same values as in Fig. 15. In~a! F250.0025Rc

r,F2c
in ~b!

F25F2c
50.0037Rc

r , and in ~c! F250.01Rc
r.F2c

. The Hopf fre-
quency always vanishes when the Hopf branch~solid line! meets
the stationary branch~dashed line!.

FIG. 17. In ~a! the critical Rayleigh numberRc , in ~b! the
critical wave numberqc

H , and in ~c! the Hopf frequencyvc for
parameters along the solid line in Fig. 13 are shown.
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for a model system@52#, can be expected in experiments on
Rayleigh-Bénard convection with modulated boundaries. We
did our calculations in the limit of large Prandtl numbers
~approximately valid, for instance, for olive oil!. However, a
preliminary work shows that finite values for the Prandtl
number will change the effects only quantitatively.

In the present work have we analyzed the onset of sec-
ondary convection for temperature modulations at one or at
two boundaries~top and bottom! alone as well as in combi-
nation with an undulated top boundary. While we found pat-
terns drifting in a specific direction for temperature modula-
tions at both boundaries alone, we find a Hopf bifurcation by
frustrated drifts only when an undulated boundary is com-
bined with a temperature modulation at the same or the op-
posite boundary. Choosing an undulated bottom boundary in
combination with a temperature modulation at the top
boundary gives the same results, only the actual numbers for
the relative phases are shifted where the various transitions
take place. For two undulated boundaries without tempera-
ture modulations we expect qualitatively similar results
whenever we have not considered this case explicitly in our
calculations.

In our approach we made no assumption about the
strength of the modulation amplitudesFi . However, it turns
out that the central phenomenon of this work, the Hopf bi-
furcation by frustrated drifts, occurs already for relatively

small modulation amplitudes. Thus, this observation seems
to justify a perturbation expansion with respect to small val-
ues for the modulation wave numberski ~as we did already
here! and with respect to small modulation amplitudesFi .
Accordingly, we are applying a perturbation approach
@58, 65# to our problem in a forthcoming work, where we
describe the derivation of a generalized Ginzburg-Landau
equation including the external modulations@52, 66#. The
preliminary analysis shows that the onset of the secondary
flow, calculated in terms of this generalized amplitude equa-
tion, agrees very well with the results presented here@52#.
Furthermore, the analysis of the amplitude equation shows
that the onset of the secondary convection via Hopf bifurca-
tion by frustrated drifts is supercritical and standing waves
are the preferred state beyond the bifurcation. This is differ-
ent from several other real systems, such as, for instance, in
convection in binary fluids, where the Hopf bifurcation is
subcritical@59, 67#. Tertiary bifurcation from standing waves
into further structures is also covered by that generalized
Ginzburg-Landau equation.

In contrast to Boussinesq fluids considered in this work,
in non-Boussinesq fluids Hopf bifurcation by frustrated drifts
can be expected even for flat boundaries with modulations of
the temperatures at the top and bottom boundaries@62#.

Drifting patterns induced by broken symmetries occur
also in electroconvection in nematic liquid crystals@68–71#,
where the symmetry is broken by a pretilt angle between the
orientational field in nematic liquid crystals~the director
field! and the top or bottom boundary. Within a model equa-
tion, which covers the essential symmetries for electrocon-
vection in nematic liquid crystals with spatially periodic
pretilt, it was shown that Hopf bifurcation by frustrated drifts
can also be expected in that system@72#. While the Hopf
bifurcation by frustrated drifts was investigated in the
present work for a quasi-one-dimensional situation, also in-
teresting orientational oscillations of convection rolls are
predicted for two-dimensional anisotropic systems@72#.

Another experimentally interesting configuration is the
wave number ratiok2 /k052. For this ratio one obtains simi-
lar scenarios for Hopf bifurcation by frustrated drifts at
slightly different relative phases and modulation amplitudes.
The detailed results of this case will be described elsewhere.

One can imagine further interesting nonlinear phenomena
related to Hopf bifurcation by frustrated drifts, especially for
well-defined periodic pretilt configurations in electroconvec-
tion in nematics. An essential point for the occurrence of all
such dynamical phenomena induced by frustrated drifts is
the interplay between two types of periodic structures, one
with a large wavelength and the other one with a short wave-
length. In electroconvection the interaction of a pattern of
short wavelength with one of long wavelength occurs spon-
taneously beyond secondary bifurcations@51, 73#. The re-
sulting dynamic structures of defect lattices and chevrons
exhibit also dynamic behavior. Thus, it is very likely that
dynamic behavior of patterns, as discussed in the present
work, are a generic result of interactions between patterns of
very different wave numbers.
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FIG. 18. Coefficients of amplitude equation~3.72! as a function
of the modulation amplitudeF2 . The other parameters are the same
as in Fig. 15. The dotted lines are the physical quantities below
F2c on the stationary branch and beyondF2c for the Hopf branch,
which are indicated by the solid lines.
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APPENDIX: TRANSFORMATION
TO FLAT BOUNDARIES

The partial derivatives,]x , ]z , take the following form in
terms of the new coordinates,j,h, according to the transfor-
mation ~3.27!:

]z5A]h , ]x5]j1hB]h . ~A1!

@A(j) and B(j) are defined in Eqs.~3.29! and ~3.32!.#
B(j) is of first order in the modulation wave numberk. This
allows in the limit of small values ofk a considerable sim-
plification of the transformation of higher-order derivatives
]x
n :

]x
n5]j

n1nhB]j
n21]h1O~k2!. ~A2!

The derivatives with respect toz transform as

]z
n5An]h

n . ~A3!

Therefore the transformed LaplacianD is up to the leading
orderO(k) of the form

D5]j
21A2]h

212hB]j]h1O~k2!. ~A4!

Similarly one obtains

D25]j
41A4]h

414hB]j
3]h12A2]j

2]h
218A2B]j]h

2

14A2Bh]j]h
31O~k2!. ~A5!
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@56# A. Schlüter, D. Lortz, and F. H. Busse, J. Fluid Mech.23, 129

~1965!.
@57# H. R. Brand, P. Lomdahl, and A. C. Newell, Physica D23, 345

~1986!.
@58# A. C. Newell, T. Passot, and J. Lega, Annu. Rev. Fluid Mech.

25, 399 ~1992!.
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